182. On the Spherical Derivative of Functions Regular or Meromorphic in the Unit Disc

By Yoshihiro ICHIHARA

Mathematical Institute, Tokyo Metropolitan University, Tokyo (Comm. by Zyoiti Suetuna, M.J.A., Nov. 13, 1967)

1. Introduction. O. Lehto and K. Virtanen [3] used the spherical derivative

$$\rho(f(z)) = \frac{|f'(z)|}{1 + |f(z)|^2}$$
 (1.1)

as a measure of the growth of f(z) near an isolated singularity, and they [1, 2] developed the study of this direction. In particular, as regards the growth of the spherical derivative Lehto proved:

Theorem A. Let f(z) be meromorphic in a neighbourhood of the essential singularity z=a. Then

$$\overline{\lim}_{z \to a} |z - a| \rho(f(z)) \ge \frac{1}{2}. \tag{1.2}$$

Equality holds for the product

$$f(z) = \prod_{\nu} \frac{z - a - a_{\nu}}{z - a + a_{\nu}},$$

where the numbers a_{ν} satisfy the condition $|a_{\nu+1}| = o(|a_{\nu}|)$.

Theorem B. If f(z) satisfies the hypothesis of Theorem A and further f(z) is regular near z=a, then

$$\overline{\lim_{z\to a}} |z-a| \rho(f(z)) = \infty.$$
 (1.3)

Further J. Clunie and W. K. Hayman obtained some extensions of Theorem A and B in their paper [4]. For instance, they proved the following result.

Theorem C. If f(z) is an integral function of proper order λ $(0 \le \lambda \le \infty)$, then

$$\overline{\lim_{r\to\infty}} \frac{r\mu(r,f)}{\log M(r,f)} \ge A_0(\lambda+1), \tag{1.4}$$

where A_0 is an absolute constant and $\mu(r, f) = \sup_{|z| = \pi} \rho(f(z))$.

2. Our object in this paper is to obtain some results concerning the growth of spherical derivative $\rho(f(z))$ for functions regular and meromorphic in the unit disc |z| < 1. First we shall prove:

Theorem 1. Suppose that f(z) is regular for |z| < 1 and that its order λ satisfies $2 < \lambda \le \infty$. Then

$$\overline{\lim_{r\to 1}} (1-r)^{\lambda-1} \mu(r,f) \ge K \lambda \left(\frac{\lambda-2}{\lambda+2}\right)^{\lambda-1}$$
 (2.1)