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1o Introduction. Consider the Navier-Stokes equation
(1) u,+(u.grad)u=lu-Vp+f, divu=0, xeG, 0<t<T,
and the condition of adherence at the boundary
(2) u=0 on the boundary of G.
Here G is a connected component of exteriors (or interiors) of a
bounded hypersurface of class C, u and f are 3-dimensional real
vector functions of x and t, and p is a scalar function of x and t.
We are mainly concerned with the question whether a nonconstant
flow of incompressible fluid, subject to the Navier-Stokes equation
(1) with f=0 and the condition (2) of adherence at the boundary,
can ever come to rest in a finite time on some potion of G. Before
stating our results, we shall define function spaces, and fix our
notations. For any open set Q in R, W,(Q) (k>O, l<p<c) is
the set of all complex-valued vector functions in L(Q) for which
listribution derivatives of up to order k lie in L(Q). W,(Q)
(k>0) is the set of all distributions u such that I(u, ) I<C ]1 I1
for in C(Q), C being a positive constant, where ]]ll is the
L-norm of . Wo(Q) (k=0, _+1,...) is the set of all distribution
u on Q which coincide on some neighborhood of each point of Q
with elements of W,(Q). The set of all 3-dimensional real vector
functions p such that e C’(G), and div =0, is denoted by C,,(G).
Let L,=L,(G) be the closure of C’,(G) in L(G). Let P be the
orthogonal projection from L(G) onto L. By A we denote the
Friedrichs extension of the symmetric operator -Pz/ in L defined
for every u such that u e C(G) C(G), div u=0, and u=0 on the
boundary of G, G being the closure of G. By Xr we denote the
set of all u in D(Ar) with the norm II u IIxr-II Aru II + II u II, D(Ar)
being the domain of Ar, where 7 is any number with 3/471.
We let X=X,/. Here I" I[ is the norm of the Hilbert space L(G)
with the scalar product (., .). Let H), Ho,(G) be the completion
of the set C,(G) of all solenoidal (divu=0) functions in C with
the norm [] Vu + I[ u [I. our results are as follows.
1) <u, > denotes the value of the functional u at .


