181. On the Analyticity and the Unique Continuation Theorem for Solutions of the Navier-Stokes Equation

By Kyûya Masuda
Department of Mathematics, University of Tokyo
(Comm. by Zyoiti Suetuna, m.J.A., Nov. 13, 1967)

1. Introduction. Consider the Navier-Stokes equation (1) $\quad \boldsymbol{u}_{t}+(\boldsymbol{u} \cdot \mathrm{grad}) \boldsymbol{u}=\Delta \boldsymbol{u}-\nabla p+\boldsymbol{f}, \operatorname{div} \boldsymbol{u}=0, x \in G, 0<t<T$, and the condition of adherence at the boundary (2) $\boldsymbol{u}=0 \quad$ on the boundary of G.

Here G is a connected component of exteriors (or interiors) of a bounded hypersurface of class C^{2}, \boldsymbol{u} and \boldsymbol{f} are 3-dimensional real vector functions of x and t, and p is a scalar function of x and t. We are mainly concerned with the question whether a nonconstant flow of incompressible fluid, subject to the Navier-Stokes equation (1) with $f=0$ and the condition (2) of adherence at the boundary, can ever come to rest in a finite time on some potion of G. Before stating our results, we shall define function spaces, and fix our notations. For any open set Q in $R^{n}, \boldsymbol{W}^{k, p}(Q)(k \geqslant 0,1 \leqslant p<\infty)$ is the set of all complex-valued vector functions in $\boldsymbol{L}^{p}(Q)$ for which distribution derivatives of up to order k lie in $\boldsymbol{L}^{p}(Q)$. $\boldsymbol{W}^{k, p}(Q)$ $(k>0)$ is the set of all distributions \boldsymbol{u} such that $\left|\langle\boldsymbol{u}, \varphi\rangle^{1}\right| \leqslant C\|\varphi\|_{L^{p}}$ for φ in $C_{0}^{\infty}(Q), C$ being a positive constant, where $\|\varphi\|_{L^{p}}$ is the L^{p}-norm of φ. $W_{\text {loc }}^{k, p}(Q)(k=0, \pm 1, \cdots)$ is the set of all distribution \boldsymbol{u} on Q which coincide on some neighborhood of each point of Q with elements of $W^{k, p}(Q)$. The set of all 3-dimensional real vector functions φ such that $\varphi \in C_{0}^{\infty}(G)$, and $\operatorname{div} \varphi=0$, is denoted by $C_{0, s}^{\infty}(G)$. Let $\boldsymbol{L}_{s}^{2}=\boldsymbol{L}_{s}^{2}(G)$ be the closure of $C_{0}^{\infty}{ }_{s}(G)$ in $\boldsymbol{L}^{2}(G)$. Let P be the orthogonal projection from $L^{2}(G)$ onto \boldsymbol{L}_{s}^{2}. By A we denote the Friedrichs extension of the symmetric operator $-P \Delta$ in L_{s}^{2} defined for every \boldsymbol{u} such that $\boldsymbol{u} \in C^{2}(G) \cap C^{1}\left(G^{a}\right), \operatorname{div} \boldsymbol{u}=0$, and $\boldsymbol{u}=0$ on the boundary of G, G^{a} being the closure of G. By X_{r} we denote the set of all \boldsymbol{u} in $D\left(A^{r}\right)$ with the norm $\|\boldsymbol{u}\|_{x_{r}}=\left\|A^{r} \boldsymbol{u}\right\|+\|\boldsymbol{u}\|, D\left(A^{r}\right)$ being the domain of A^{r}, where γ is any number with $3 / 4<\gamma<1$. We let $\boldsymbol{X}=\boldsymbol{X}_{4 / 5}$. Here $\|\cdot\|$ is the norm of the Hilbert space $\boldsymbol{L}^{2}(G)$ with the scalar product (\cdot, \cdot). Let $\boldsymbol{H}_{0, s}^{1}=\boldsymbol{H}_{0, s}^{1}(G)$ be the completion of the set $C_{0 . s}^{1}(G)$ of all solenoidal ($\operatorname{div} \boldsymbol{u}=0$) functions in C_{0}^{1} with the norm $\|\nabla \boldsymbol{u}\|+\|\boldsymbol{u}\|$. Now our results are as follows.

[^0]
[^0]: 1) $\langle\boldsymbol{u}, \varphi\rangle$ denotes the value of the functional \boldsymbol{u} at φ.
