181. On the Analyticity and the Unique Continuation Theorem for Solutions of the Navier-Stokes Equation

By Kyûya Masuda

Department of Mathematics, University of Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Nov. 13, 1967)

1. Introduction. Consider the Navier-Stokes equation (1) $u_t + (u \cdot \operatorname{grad})u = \Delta u - \nabla p + f$, div u = 0, $x \in G$, 0 < t < T, and the condition of adherence at the boundary

(2) u=0 on the boundary of G.

Here G is a connected component of exteriors (or interiors) of a bounded hypersurface of class C^2 , u and f are 3-dimensional real vector functions of x and t, and p is a scalar function of x and t. We are mainly concerned with the question whether a nonconstant flow of incompressible fluid, subject to the Navier-Stokes equation (1) with f=0 and the condition (2) of adherence at the boundary, can ever come to rest in a finite time on some potion of G. Before stating our results, we shall define function spaces, and fix our notations. For any open set Q in \mathbb{R}^n , $W^{k,p}(Q)$ $(k \ge 0, 1 \le p < \infty)$ is the set of all complex-valued vector functions in $L^{p}(Q)$ for which distribution derivatives of up to order k lie in $L^{p}(Q)$. $W^{k,p}(Q)$ (k>0) is the set of all distributions u such that $|\langle u, \varphi \rangle^{(1)}| \leq C ||\varphi||_{L^p}$ for φ in $C_0^{\infty}(Q)$, C being a positive constant, where $||\varphi||_{L^p}$ is the L^p-norm of φ . $W_{loc}^{k,p}(Q)$ $(k=0,\pm 1,\cdots)$ is the set of all distribution u on Q which coincide on some neighborhood of each point of Q with elements of $W^{k,p}(Q)$. The set of all 3-dimensional real vector functions φ such that $\varphi \in C_0^{\infty}(G)$, and div $\varphi = 0$, is denoted by $C_{0,s}^{\infty}(G)$. Let $L_s^2 = L_s^2(G)$ be the closure of $C_{0s}^{\infty}(G)$ in $L^2(G)$. Let P be the orthogonal projection from $L^2(G)$ onto L^2_s . By A we denote the Friedrichs extension of the symmetric operator $-P \varDelta$ in L_s^2 defined for every u such that $u \in C^2(G) \cap C^1(G^a)$, div u = 0, and u = 0 on the boundary of G, G^{α} being the closure of G. By X_{γ} we denote the set of all u in $D(A^{r})$ with the norm $||u||_{X_{r}} = ||A^{r}u|| + ||u||, D(A^{r})$ being the domain of A^{γ} , where γ is any number with $3/4 < \gamma < 1$. We let $X = X_{4/5}$. Here $\|\cdot\|$ is the norm of the Hilbert space $L^2(G)$ with the scalar product (\cdot, \cdot) . Let $H_{0,s}^1 = H_{0,s}^1(G)$ be the completion of the set $C_{0,s}^{1}(G)$ of all solenoidal (div u=0) functions in C_{0}^{1} with the norm $|| \nabla u || + || u ||$. Now our results are as follows.

¹⁾ $\langle u, \varphi \rangle$ denotes the value of the functional u at φ .