3. An Extension of Beurling's Theorem. II

By Zenjiro Kuramochi
Mathematical Institute, Hokkaido University
(Comm. by Kinjirô Kunual, m.J.A., Jan. 12, 1968)

This article is the continuation of the previous paper of the same title. We shall prove the following

Lemma 5. Let F be a set of positive capacity in B and suppose for any point $p \in F \cap B_{1}^{N}$ there exists a contact set $\Delta(p)$ of p such that $\lim _{n=\infty}{\mathcal{J (p) \cap v _ { n }}(p)} N(z, p)>0$. Let $\left\{G_{n}\right\}$ be a decreasing sequence of domains in $R-R_{0}$ such that $G_{n} \supset\left(G_{n, p} \cap v_{m}(p) \cap \Delta(p)\right)$, where $G_{n, p} \ni p$ and m and $G_{n, p}$ depend on p and G_{n}. Then

$$
\omega\left(\left\{G_{n}\right\}, z\right)>0 .
$$

Put $\Gamma_{m}=E\left[p \in B_{1}^{N}: \int_{\partial R_{0}} \frac{\partial}{\partial n} \lim _{n=\infty} G_{n^{\prime}, p \cap v_{n}(p) \cap \Delta(p)} N(z, p) d s \geqq \frac{2 \pi}{m}\right]$. Then by Lemma 1.3) $\mathrm{F}=B_{0}^{N}+\sum_{m=1}^{\infty} \Gamma_{m}$. Now since B_{0}^{N} is an F_{σ} set of capacity zero, there exists a number l_{0} and a closed set F^{\prime} of positive capacity in F such $\left(F^{\prime} \cap B_{1}^{N}\right) \subset \Gamma_{l_{0}}$. Hence there exists a positive mass distribution μ on $F^{\prime} \cap B_{1}^{N}$ such that $V(z)=\int N(z, p) d \mu(p)$ and $V(z)$ $\leqq 1$ in $R-R_{0} .{ }_{G_{n}} V(z)={ }_{G_{n}}\left(\int N(z, p) d \mu(p)\right) \geqq \int \lim _{n=\infty}{ }_{\sigma_{n^{\prime}}, p \cap \Delta(p) \cap v_{n}(p)} N(z, p) d \mu(p)$ $=\int_{n=\infty} \lim _{\Delta(p) \cap v_{n}(p)} N(z, p) d \mu(p)$ for any n and $\int_{\partial R_{0}} \frac{\partial}{\partial n}{ }^{\sigma_{n}} V(z) d s \geqq \frac{2 \pi}{l_{0}} \int d \mu(p)>0$. Let $\omega_{n}(z)=\omega\left(G_{n}, z, R-R_{0}\right)$. Then by the maximum principle $\omega_{n}(z)$ $\geqq{a_{n}} V(z)$. Let $n \rightarrow \infty$. Then

$$
\omega\left(\left\{G_{n}\right\}, z\right) \geqq \lim _{n=\infty}{\sigma_{n}} V(z)>0
$$

Let $w=f(z): z \in R$ be an analytic function whose values fall on a basic surface \underline{R}. Suppose N-Martin's topology is defined in $\bar{R}-R_{0}$. Let $p \in B_{1}^{N}$ and let $\Delta(p)$ be a contact set of $p \in B_{1}^{N}$. Put

$$
M(f(p))=\bigcap_{\tau} \overline{f\left(G_{\tau}\right)} \text { and } \Delta(f(p))=\bigcap_{\tau} \overline{f\left(\Delta(p) \cap G_{\tau}\right)} .
$$

Then $M_{N}(f(p)) \subset \Delta(f(p))$, where $\left\{G_{\tau}\right\}$ runs over all domains G_{τ} such that $G_{\tau} \ni p$ and the closure is taken with respect to the topology of \underline{R}.

Let \mathfrak{F} be a closed set in R. We suppose \mathfrak{F} is contained in a local parameter disc $|w|<1$ and let $A(r)$ be the area of $R(\operatorname{not}$ of $R)$ on $E[w$: dist $(w, \mathfrak{F}) \leqq r]=\mathfrak{F}_{r}$. We suppose \mathfrak{F} in $|w|<\frac{1}{2}$. If \mathfrak{F} is one point a and $\lim _{r \rightarrow 0} \frac{A(r)}{r^{2}}<\infty, a$ is called an ordinary point. A. Beurling and M. Tsuji proved the following

