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1. Statement of the main result. Throughout this paper we
assume that every ring has an identity element and an R-module
means a unital left R-module. Let B=Homg (M, M) be an R-endo-
morphism ring of an R-module M as a right operator domain of M.
In this paper we shall be concerned with the following condition:

Condition (0). Me~M, e=¢*c B, implies e=1.

It is easy to see that if any isomorphism between two R-sub-
modules of M can be extended to an automorphism of M, then M
satisfies Condition (0). Our aim is to prove the following theorem.

Theorem 1. Let M be an injective R-module with Condition
(0). Then any isomorphism between two R-submodules of M can
be extended to an automorphism of M.

2. Left self-injective, regular rings with Condition (0). We
denote the injective envelope [1] of an R-module A by E(A). We
write N'’DN if N’ is an essential extension of N, If X is a subset
of a ring S, we define the left (resp. right) annihilator

(X)={seS|sX=0}
(resp. r(X), similarly). We shall list a series of lemmas.

Lemma 2. Let S be a left self-injective, regular ring. Then
every left annihilator ideal A is generated by an idempotent.

Proof. By the regularity of S, we have r(4)= U eS. Then

e=e2er(d)

A=Il(r(A)= l(eegA)eS) =86QA)Z(6S) = N Sl-—e).

S(1—e)D4d

But, for each S(1—e)DA, E(A)’'DS(1—e)NE(A)’DA and hence
E(A)=8S(1—e)NE(A)c S(1—e) by the injectivity of S(1—e)n E(A).
Therefore A=FE(A)=Sf for some f=jf*¢ S.

Lemma 3. (J. von Neumann [7, Lemma 18]). Let S be a
regular ring. Then a principal left ideal of S is a two-sided
ideal if and only if it is generated by a central idempotent.

Lemma 4. (B.Eckmannand A.Schopf[1,4.3]). Letv:A—A'
be an R-isomorphism, then v can be extended to an R-isomorphism
of E(A) onto E(A).

Lemma 5. For any two idempotents e, f of a regular ring S,
the following conditions are equivalent:

(1) eSf=0.

(2) Se'~Sf' for some 0+Se’'CSe and Sf'CSf.



