60. On Some Mixed Problems for Fourth Order Hyperbolic Equations

By Sadao Miyatake
Department of Mathematics Kyoto, University
(Comm. by Kinjirô KunugI, m. J. A., April 12, 1968)

§1. Introduction. We consider some mixed problems for fourth order hyperbolic equations. Let S be a smooth and compact hypersurface in R^{n} and Ω be the interior or exterior of S. Let
(E) $L u=\left(\frac{\partial^{4}}{\partial t^{4}}+\left(a_{1}+a_{2}+a_{3}\right) \frac{\partial^{2}}{\partial t^{2}}+a_{3} a_{1}\right) u+B\left(x, t, \frac{\partial}{\partial t}, D\right) u=f$.

Here $a_{k}(k=1,2,3)$ are the following operators:

$$
\begin{align*}
& a_{k}=-\sum_{i j}^{n} \frac{\partial}{\partial x_{i}}\left(a_{k, i j}(x) \frac{\partial}{\partial x_{j}}\right)+b_{k}(x, D), \\
& a_{k, i j}(x)=a_{k, j i}(x) \text { are real, } \tag{1.1}\\
& \sum_{i j}^{n} a_{k, i j}(x) \xi_{i} \xi_{j} \geq \delta|\xi|^{2}, \quad(\delta>0)
\end{align*}
$$

for every $(x, \xi) \in \Omega \times R^{n}(k=1,2,3)$, B denotes an arbitrary third order differential operator and b_{k} are first order operators. Let us assume that all coefficients are sufficiently differentiable and bounded in $\bar{\Omega}$ or in $\bar{\Omega} \times(0, \infty)$.

Recently S. Mizohata [1] treated mixed problems for the equations of the form

$$
\begin{aligned}
L=\prod_{i=1}^{m}\left(\frac{\partial^{2}}{\partial t^{2}}+c_{i}(x) a(x, D)\right)+B_{2 m-1}, \quad c_{i}(x)>c_{i+1}(x), & c_{i}(x)>0 \\
& (i=1, \cdots, m)
\end{aligned}
$$

Let us consider the case where $m=2$. The above equation has the form

$$
\frac{\partial^{4}}{\partial t^{4}}+\left(c_{1}(x)+c_{2}(x)\right) a \frac{\partial^{2}}{\partial t^{2}}+c_{1} c_{2} a^{2}+\text { (operator of third order) }
$$

Now it is not difficult to see that this operator can be considered as a special class of (E), by putting $a_{1}=\alpha c_{1} a, a_{2}=(1-\alpha) c_{1} a+\left(1-\frac{1}{a}\right) c_{2} a$, α being a constant less than 1 chosen closely to 1 . We consider the case where the operators a_{k} have some relations only at the boundary. Let us denote the Sobolev space $H^{p}(\Omega)$ simply by H^{p}, and its norm by $\|\cdot\|_{p}$ and denote the closure of $\mathscr{D}(\Omega)$ in H^{1} by $\mathscr{D}_{L^{2}}^{1}$. Define

$$
D\left(a_{k}\right)=\left\{u \in H^{3} \cap \mathscr{D}_{L^{2}}^{1} ; a_{k} u \in \mathscr{D}_{L^{2}}^{1}\right\} .
$$

Namely, $u \in H^{3}$ belongs to $D\left(a_{k}\right)$ means that not only u itself but also

