80. On Nuclear Spaces with Fundamental System of Bounded Sets. I

By Shunsuke Funakosi

(Comm. by Kinjirô KUNUGI, M. J. A., May 13, 1968)

We consider a nuclear space with a fundamental system of bounded sets. In this paper, we consider the open mapping and closed graph theorems in the nuclear space.

For nuclear spaces and its related notion see [8]. Most of the definitions and notations of locally convex spaces are taken from N. Bourbaki [1] and T. Husain [4].

1. In this section, we consider under what conditions nuclear space is the space with the open mapping and closed graph theorems.

Definition 1. Let E be a locally convex vector space and E' its dual.

- (1) ew*-topology is defined to be the finest topology on E' which coincides with $\sigma(E', E)$ on each equicontinuous set of E'.
- (2) p-topology is the \otimes -topology on E' where \otimes consists of all precompact subsets of E.
 - (3) E is called a S-space if on E', $ew^*=p$.
- (4) E is called a B-complete if a linear continuous and almost open mapping of E onto any locally convex vector space F is open.
- (5) E is called a $B(\mathcal{I})$ -space if it satisfies the following statement; For each barrelled space F, a linear and continuous mapping of E onto F is open.

Let E and F be normed spaces, U and V their closed unit balls respectively. A continuous linear mapping T of E in F is called a nuclear mapping if there exists a continuous linear form $a_n \in E'$ and $y_n \in F$ such that the following holds;

$$Tx = \sum_{N} \langle x, a_n \rangle y_n$$
 for $x \in E$

and

$$\sum_{\mathbf{v}} P_{\mathbf{v}}(a_n) P_{\mathbf{v}}(y_n) < +\infty$$
.

For each nuclear mapping T define the norm:

$$\nu(T) = \inf \left\{ \sum_{N} P_{U^0}(a_n) P_{V}(y_n) \right\}.$$

Let $\mathcal{N}(E, F)$ be the set of all nuclear mappings of E into F, we introduce a norm in $\mathcal{N}(E, F)$ by $\nu(T)$. Let $\mathcal{L}(E, F)$ be the set of all continuous linear mappings of E into F, let $\mathcal{N}(E, F)$ be the set of all mappings $t \in \mathcal{L}(E, F)$ such that t(E) is a finite dimentional subspace