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1o If T is a completely continuous operator defined on a Hilbert
space H, then T can be expressed in the Schaen formula:
( 1 ) T

=1

where (i) {2,} is a decreasing sequence of positive numbers which are
proper values of
( 2 ) T (T* T)1/2,
(ii) (9,} and {} are orthonormal sets in H, and (iii) a dyad f(R)g is
defined by
( 3 ) (f(R)g)h-- (hlg)f,
for every h e H, cf. [2]. Since the proper values of a completely con-
tinuous operator TI converge to zero, the series of (1) converges
uniformly.

An operator T acting on H is of Hilbert-Schmidt class if

is finite whenever {) is a orthonormal base of H. An operator T of
Hilbert-Schmidt class is completely continuous and

(5)

where (} is the coefficients of the Schatten formula (1).
The purpose of the present note is to show the following minimal

property of the Schatten formula:
Theorem 1. If T is of Hilbert-Schmid$ class and expressed in

(1), hen

attains its minimum among all approximation by dyads" that is,
( 6 )

for every dyad f(R)g.
2. Let H=L[0, 1]. If u(x, y) is a measurable function defined

on [0, 1] [0, 1] with

u I[- u(x, y)I"dx dy< + c,

then, for every f e H,


