67. Characterizations of Self-Injective Rings

By Toyonori KATO
College of General Education, Tôhoku University, Sendai
(Comm. by Kenjiro Shoda, M. J. A., May 13, 1968)

In the theory of (non-commutative) rings, self-injective rings are one of the most attractive objects, and have been studied in the last two decades by many authors. It is well known that a ring R with identity element is right self-injective if and only if, for each right ideal I and for each map $f:I_R\to R_R$, there exists $a\in R$ such that f(i)=ai for all $i\in I$ (See Baer [1, Theorem 1]). The theory of QF-rings provides us with many characterizations of self-injective rings with minimum condition. For example, the following conditions are equivalent for a (left or right) Artinian ring R:

- (1) R is right self-injective.
- (2) l(r(L))=L, r(l(I))=I for each left ideal L and right ideal I.
- (3) If aR (resp. Ra), $a \in R$, is simple then l(r(a)) = Ra (resp. r(l(a)) = aR).

For a discussion of the condition (3), see Kato [6, Lemma 2].

In this paper we shall give some characterizations of right selfinjective rings in terms of duality.

1. Preliminaries. Throughout this paper each ring R will be a ring with identity element and each module over R will be unital.

If A is a right R-module, let $A^* = \operatorname{Hom}_R(A, R)$ be its dual and let $\delta_A: A \to A^{**}$ be the natural map. We call, as usual, A torsionless (resp. reflexive) if δ_A is a monomorphism (resp. an isomorphism). If X is a subset of A (resp. A^*), then we set

$$l(X) = \{b \in A^* \mid bX = 0\}$$
 (resp. $r(X) = \{a \in A \mid Xa = 0\}$).

We shall have need of the following lemma for our characterizations of right self-injective rings.

Lemma 1. (Rosenberg and Zelinsky [7, Theorem 1.1]). Let R be a right self-injective ring, A a right R-module, and B a finitely generated submodule of A^* . Then l(r(B))=B.

Proof. Write $B=Rb_1+\cdots+Rb_n$, $b_i\in B$, and let $b\in l(r(B))$. Then $\bigcap_{i=1}^n r(b_i)=r(B)\subset r(b)$. Hence there exists a map $f:\bigoplus^n R_R\to R_R$ such that $(b_1a,\cdots,b_na)\to ba$, $a\in A$, by virtue of the injectivity of R_R . Then

$$ba = f(b_1a, \dots, b_na) = f(b_1a, 0, \dots, 0) + \dots + f(0, \dots, 0, b_na)$$

= $r_1b_1a + \dots + r_nb_na$,