108. On the Hölder Continuity of Stationary Gaussian Processes

By Tunekiti Sirao and Hisao Watanabe
Nagoya University and Kyûshû University
(Comm. by Kinjirô Kunugr, M. J. A., June 12, 1968)

Let $X=\{X(t) ;-\infty<t<\infty\}$ be a real, separable and stochastically continuous stationary Gaussian process with mean zero and with the covariance function $\rho(t)=E(X(t+s) X(s))$. Without loss of generality, we may assume $\rho(0)=1$. The continuity of path functions of X has been studied by many authors and further, under the rather strong condition on $\sigma^{2}(t)=E\left((X(t+s)-X(s))^{2}\right)=2(1-\rho(t))$, the Hölder continuity of $X(t, w)^{1)}$ was discussed by Yu. K. Belayev in his [1], among others. Our purpose in this paper is to give the final result about the Hölder continuity of $X(t, w)$ under the similar conditions to Belayev's one. In the case of Brownian motion with d-dimensional parameter, the same problem was solved by T. Sirao [3]. We will state our result in the form corresponding to the Brownian case. After the Brownian case, we first introduce the notions of the upper class and lower class for $\{X(t) ; 0 \leqq t \leqq 1\}$. If there exists a positive number δ such that $|t-s| \leqq \delta(0 \leqq t, s \leqq 1)$ implies

$$
|f(t)-f(s)| \leqq g(|t-s|)
$$

then we say that $f(t)$ satisfies Lipschitz's condition relative to $g(t)$. Let $\varphi(t)$ be a positive, non-decreasing and continuous function defined for large t 's. If almost all sample functions $X(t, w)$ satisfy (do not satisfy) Lipschitz's condition relative to $g(t)=\sigma(t) \varphi(1 / t)$, then we say that $\varphi(t)$ belongs to the upper (lower) class with respect to the uniform continuity of $\{X(t) ; 0 \leqq t \leqq 1\}$ and denote it by $\varphi \in \mathcal{U}^{u}\left(\mathcal{L}^{u}\right)$.

Next, we consider following Condition (A) consisting in (A. 1) and (A. 2).
(A. 1) There exist constants $0<\alpha<2,-\infty<\beta<\infty$, and $\delta>0$ such that for any h in $(0, \delta)$

$$
C_{1} \frac{h^{\alpha}}{|\log h|^{\beta}} \leqq \sigma^{2}(h) \leqq C_{2} \frac{h^{\alpha}}{|\log h|^{\alpha}}, \quad 0<C_{1}<C_{2}<\infty .
$$

(A. 2) $\sigma^{2}(h)$ is concave in $(0, \delta)$ if either one of $0<\alpha<1,-\infty<\beta$ $<\infty$ or $\alpha=1, \beta \leqq 0$ holds and $\sigma^{2}(h)$ is convex in ($0, \delta$) if either one of $\alpha>1,-\infty<\beta<\infty$ or $\alpha=1, \beta \geqq 0$ holds, where α, β, γ are constants mentioned in (A. 1).

1) w denotes a probability parameter.
