101. On the Nörlund Summability of Fourier Series and its Conjugate Series

By Hiroshi HIROKAWA

Department of Mathematics, Chiba University, Chiba

(Comm. by Kinjirô KUNUGI, M.J.A., June 12, 1968)

§ 1. Let $\{p_n\}$ be a sequence such that $P_n = p_0 + p_1 + \cdots + p_n \neq 0$ for $n = 0, 1, 2, \cdots$. A series $\sum_{n=0}^{\infty} a_n$ with its partial sum s_n is said to be summable (N, p_n) to sum s, if

$$\frac{1}{P_n}\sum_{k=0}^n p_{n-k}s_k \to s \quad \text{as} \quad n \to \infty.$$

Let f(t) be a periodic finite-valued function with period 2π and integrable (L) over $(-\pi, \pi)$. Let its Fourier series be

(1.1)
$$\frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=0}^{\infty} A_n(t).$$

Then the conjugate series of (1.1) is

(1.2)
$$\sum_{n=1}^{\infty} (b_n \cos nt - a_n \sin nt) = \sum_{n=1}^{\infty} B_n(t)$$

Throughout this paper, we write

$$\varphi(t) \equiv \frac{1}{2} \{ f(x+t) + f(x-t) - 2f(x) \}, \qquad \Phi(t) \equiv \int_0^t |\varphi(u)| \, du,$$

$$\psi(t) \equiv \frac{1}{2} \{ f(x+t) - f(x-t) \}, \qquad \Psi(t) \equiv \int_0^t |\psi(u)| \, du$$

and $\tau = [1/t]$, where $[\lambda]$ is the integral part of λ .

The purpose of this paper is to prove the following two theorems.

Theorem 1. Let $\{p_n\}$ be a sequence such that

(1.3)
$$p_n > 0, p_n \downarrow$$
 and $P_n \rightarrow \infty$.
And let $\lambda(t)$ be a positive integrable function such that

(1.4)
$$\int_{n}^{n} \frac{\lambda(u)}{u} du = O(P_{n}) \quad as \quad n \to \infty$$

for any fixed $\eta > 0$. If

(1.5)
$$\Phi(t) = o\left(t\lambda\left(\frac{1}{t}\right)/P_{\tau}\right) \quad as \quad t \to +0$$

then the series $\sum_{n=0}^{\infty} A_n(x)$ is summable (N, p_n) to sum f(x).

(1.6) Theorem 2. Let
$$\{p_n\}$$
 and $\lambda(t)$ be defined as in Theorem 1. If
 $\Psi(t) = o\left(t\lambda\left(\frac{1}{t}\right)/P_r\right)$ as $t \to +0$,