101. On the Nörlund Summability of Fourier Series and its Conjugate Series

By Hiroshi Hirokawa
Department of Mathematics, Chiba University, Chiba
(Comm. by Kinjirô Kunugi, m. J. A., June 12, 1968)

§ 1. Let $\left\{p_{n}\right\}$ be a sequence such that $P_{n}=p_{0}+p_{1}+\cdots+p_{n} \neq 0$ for $n=0,1,2, \ldots$ A series $\sum_{n=0}^{\infty} a_{n}$ with its partial sum s_{n} is said to be summable $\left(N, p_{n}\right)$ to sum s, if

$$
\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} s_{k} \rightarrow s \quad \text { as } \quad n \rightarrow \infty .
$$

Let $f(t)$ be a periodic finite-valued function with period 2π and integrable (L) over $(-\pi, \pi$). Let its Fourier series be

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=0}^{\infty} A_{n}(t) . \tag{1.1}
\end{equation*}
$$

Then the conjugate series of (1.1) is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(b_{n} \cos n t-a_{n} \sin n t\right)=\sum_{n=1}^{\infty} B_{n}(t) . \tag{1.2}
\end{equation*}
$$

Throughout this paper, we write

$$
\begin{aligned}
& \varphi(t) \equiv \frac{1}{2}\{f(x+t)+f(x-t)-2 f(x)\}, \quad \Phi(t) \equiv \int_{0}^{t}|\varphi(u)| d u, \\
& \psi(t) \equiv \frac{1}{2}\{f(x+t)-f(x-t)\}, \quad \Psi(t) \equiv \int_{0}^{t}|\psi(u)| d u
\end{aligned}
$$

and $\tau=[1 / t]$, where $[\lambda]$ is the integral part of λ.
The purpose of this paper is to prove the following two theorems.
Theorem 1. Let $\left\{p_{n}\right\}$ be a sequence such that

$$
\begin{equation*}
p_{n}>0, p_{n} \downarrow \quad \text { and } \quad P_{n} \rightarrow \infty . \tag{1.3}
\end{equation*}
$$

And let $\lambda(t)$ be a positive integrable function such that

$$
\begin{equation*}
\int_{\eta}^{n} \frac{\lambda(u)}{u} d u=O\left(P_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{1.4}
\end{equation*}
$$

for any fixed $\eta>0$. If

$$
\begin{equation*}
\Phi(t)=o\left(t \lambda\left(\frac{1}{t}\right) / P_{\tau}\right) \quad \text { as } \quad t \rightarrow+0 \tag{1.5}
\end{equation*}
$$

then the series $\sum_{n=0}^{\infty} A_{n}(x)$ is summable $\left(N, p_{n}\right)$ to sum $f(x)$.
Theorem 2. Let $\left\{p_{n}\right\}$ and $\lambda(t)$ be defined as in Theorem 1. If

$$
\begin{equation*}
\Psi(t)=o\left(t \lambda\left(\frac{1}{t}\right) / P_{\tau}\right) \quad \text { as } \quad t \rightarrow+0 \tag{1.6}
\end{equation*}
$$

