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148. The Completion of a Convergence Space
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In this paper we shall make a study of the completion of a space:
here by a space we mean a set in which there is defined a closure
operation satisfying three conditions ACA, ¢=¢, and AUB=AUB.

Such a space was introduced by Tukey [8] and studied also by
Fisher [4] under the name of a convergence space.?

In this paper we shall describe a space by assigning a neighbor-
hood system to each point of it.

Thus we get a generalization of the results of the author’s paper
[71.2

§1. Let ¢ be a mapping of a set X into a set Y. Then for a
family % consisting of subsets of X, we will denote by ¢() the family
{p(A)|A e} and for a family B consisting of subsets of Y, let’s
denote by ¢~(B) the family {¢~(B)|B ¢ 8}.

Let X be a subset of a set X*, then for a filter { in X, the filter in
X* generated by f is denoted by f*.

We consider a set X together with a family N of filters in X
satisfying the following three conditions:

N1) to every x e X there corresponds uniquely a filter N(x) each
member of which contains z,

N2) a filter in X containing an element of N also belongs to N,

N8) for every xe X, N(x) € N.

We will denote such a space X with N by (X ; N) and call it a
space simply.

A filter base f in X converges to x in X if and only if the filter
generated by f contains R(x).?

A filter N(x) and each of its members are called the neighborhood
system of x and a neighborhood of x respectively.

A mapping ¢ of a space (X ; N) into a space (Y ; M) is continuous
if and only if for every x e X a filter generated by ¢(J(x)) contains

1) In this paper spaces are all I; convergence spaces. See [4].

2) In that paper [7] the condition C6) is stated erroneously. It must be read
as C6) of this paper and f in the last two lines on page 464 must be a leg.

3) N1) with this definition of convergence is called I, convergence structure
of a space by Fisher.



