148. The Completion of a Convergence Space in the Sense of H. R. Fisher

By Suketaka Mitani
University of Osaka Prefecture
(Comm. by Kinjirô KunugI, m. J. A., Sept. 12, 1968)

In this paper we shall make a study of the completion of a space: here by a space we mean a set in which there is defined a closure operation satisfying three conditions $A \subseteq \bar{A}, \bar{\phi}=\phi$, and $\overline{A \cup B}=\bar{A} \cup \bar{B}$.

Such a space was introduced by Tukey [8] and studied also by Fisher [4] under the name of a convergence space. ${ }^{1)}$

In this paper we shall describe a space by assigning a neighborhood system to each point of it.

Thus we get a generalization of the results of the author's paper [7]. ${ }^{2)}$
§ 1. Let φ be a mapping of a set X into a set Y. Then for a family \mathfrak{A} consisting of subsets of X, we will denote by $\varphi(\mathfrak{H})$ the family $\{\varphi(A) \mid A \in \mathfrak{A}\}$ and for a family \mathfrak{B} consisting of subsets of Y, let's denote by $\varphi^{-1}(\mathfrak{B})$ the family $\left\{\varphi^{-1}(B) \mid B \in \mathfrak{B}\right\}$.

Let X be a subset of a set X^{*}, then for a filter f in X, the filter in X^{*} generated by f is denoted by f^{*}.

We consider a set X together with a family N of filters in X satisfying the following three conditions:

N1) to every $x \in X$ there corresponds uniquely a filter $\mathfrak{n}(x)$ each member of which contains x,

N2) a filter in X containing an element of N also belongs to N,
N3) for every $x \in X, \mathfrak{N}(x) \in N$.
We will denote such a space X with N by $(X ; N)$ and call it a space simply.

A filter base f in X converges to x in X if and only if the filter generated by f contains $\mathfrak{N}(x) .{ }^{3)}$

A filter $\mathfrak{R}(x)$ and each of its members are called the neighborhood system of x and a neighborhood of x respectively.

A mapping φ of a space ($X ; N$) into a space $(Y ; M)$ is continuous if and only if for every $x \in X$ a filter generated by $\varphi(\Re(x)$) contains

[^0]
[^0]: 1) In this paper spaces are all \mathscr{I}_{1} convergence spaces. See [4].
 2) In that paper [7] the condition C6) is stated erroneously. It must be read as C6) of this paper and \mathfrak{f} in the last two lines on page 464 must be a leg.
 3) N1) with this definition of convergence is called \mathscr{I}_{1} convergence structure of a space by Fisher.
