148. The Completion of a Convergence Space in the Sense of H. R. Fisher

By Suketaka MITANI University of Osaka Prefecture

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1968)

In this paper we shall make a study of the completion of a space: here by a space we mean a set in which there is defined a closure operation satisfying three conditions $A \subseteq \overline{A}$, $\overline{\phi} = \phi$, and $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Such a space was introduced by Tukey [8] and studied also by Fisher [4] under the name of a convergence space.¹⁾

In this paper we shall describe a space by assigning a neighborhood system to each point of it.

Thus we get a generalization of the results of the author's paper $[7]^{2}$

§1. Let φ be a mapping of a set X into a set Y. Then for a family \mathfrak{A} consisting of subsets of X, we will denote by $\varphi(\mathfrak{A})$ the family $\{\varphi(A) | A \in \mathfrak{A}\}$ and for a family \mathfrak{B} consisting of subsets of Y, let's denote by $\varphi^{-1}(\mathfrak{B})$ the family $\{\varphi^{-1}(B) | B \in \mathfrak{B}\}$.

Let X be a subset of a set X^* , then for a filter f in X, the filter in X^* generated by f is denoted by f^{*}.

We consider a set X together with a family N of filters in X satisfying the following three conditions:

N1) to every $x \in X$ there corresponds uniquely a filter $\Re(x)$ each member of which contains x,

N2) a filter in X containing an element of N also belongs to N,

N3) for every $x \in X$, $\mathfrak{N}(x) \in N$.

We will denote such a space X with N by (X; N) and call it a *space* simply.

A filter base f in X converges to x in X if and only if the filter generated by f contains $\Re(x)$.³⁾

A filter $\Re(x)$ and each of its members are called the *neighborhood* system of x and a *neighborhood* of x respectively.

A mapping φ of a space (X; N) into a space (Y; M) is *continuous* if and only if for every $x \in X$ a filter generated by $\varphi(\Re(x))$ contains

¹⁾ In this paper spaces are all \mathcal{T}_1 convergence spaces. See [4].

²⁾ In that paper [7] the condition C6) is stated erroneously. It must be read as C6) of this paper and f in the last two lines on page 464 must be a leg.

³⁾ N1) with this definition of convergence is called \mathcal{I}_1 convergence structure of a space by Fisher.