147. General Theory of Mappings

By Kiyoshi Iséki

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1968)

In his paper [1], J. R. Büchi considered the notion of functions on a set. Some of his results are true for the both set theories in the senses of G. Cantor and S. Leśniewski. In this paper, we concern with a theory of functions on a set in the sense of G. Cantor.

Let E, E' be two given sets, f a function from 2^E to $2^{E'}$, where 2^E , $2^{E'}$ denote the sets of all subsets of E, E' respectively.

J. R. Büchi [1] introduced a notion of a pair of functions (f, \bar{f}) as follows: f and \bar{f} are a pair of functions, if, for any function f, there is a function \bar{f} from $2^{E'}$ to 2^E such that $A' \cap f(A) = 0$ implies $\bar{f}(A') \cap A = 0$, where $A \in 2^E$, $A' \in 2^{E'}$. J. R. Büchi obtained some important properties on (f, \bar{f}) (see [1]). Among these properties, an important result is the representation of $\bar{f}: f(A') = \cap \{X \mid f(E-X) \subset E' - A'\}$.

If (f, \bar{f}) is a pair of functions, then for $\{A_{\alpha}\}, A_{\alpha} \subset E$, we have $f(\bigcup A_{\alpha}) = \bigcup_{\alpha} f(A_{\alpha})$ (see [1], p. 164). Hence f is a multiform mapping in the sense of Dubreil ([4]-[7]).

Further we have $\overline{f}(f(A)) \supset A$. To prove it, take an element x of A. Suppose that $\overline{f}(f(A)) \cap x = \phi$, then $f(A) \cap f(x) = 0$, which contradicts to $f(x) \subset f(A)$.

For the empty set ϕ and E, we have $\overline{f}(f(\phi)) = \phi$, $\overline{f}(f(E)) = E$. Therefore the family \mathfrak{M} of all subsets A of E such that $\overline{f}(f(A)) = A$ is not empty.

Let $A = \bigcup A_{\alpha}$, $A_{\alpha} \in \mathfrak{M}$, then we

$$\bar{f}(f(A)) = \bar{f}(f(\bigcup A_{\alpha})) = \bar{f}(\bigcup f(A_{\alpha})) = \bigcup \bar{f}(f(A_{\alpha})) = \bigcup A_{\alpha} = A.$$

Let $B = \bigcap_{\alpha} A_{\alpha}$, $A_{\alpha} \in \mathfrak{M}$, then

$$\bar{f}(f(B)) = \bar{f}(f(\bigcap_{\alpha} A_{\alpha})) \subset \bar{f}(\bigcap_{\alpha} f(A_{\alpha})) \subset \bigcap_{\alpha} \bar{f}(f(A_{\alpha})) = \cap A_{\alpha} = B.$$

On the other hand, $B \subset \overline{f}(f(B))$ for any subset B of E.

For any subset $A \in \mathfrak{M}$, $(E-A) \cap \overline{f}(f(A)) = (E-A) \cap A = \phi$. Hence $f(E-A) \cap f(A) = \phi$.

This implies $\overline{f}(f(E-A)) \cap A = \phi$, and we have $\overline{f}(f(E-A)) \subset E-A$. Therefore, we have the following

Theorem 1. The family \mathfrak{M} of all subsets A such that f(f(A))

¹⁾ In this Note, we shall assume that $f(x) \neq 0$ for every $x \in E$.