141. The Characters of Some Induced Representations of Semisimple Lie Groups

By Takeshi Hirai
Department of Mathematics, Kyoto University
(Comm. by Kinjirô Kunugi, m. J. A., Sept. 12, 1968)

Introduction. Let G be a simply connected semisimple Lie group. Let g_{0} be its Lie algebra and let $g_{0}=f_{0}+\mathfrak{p}_{0}$ be a Cartan decomposition of g_{0}, where f_{0} is a maximal compact subalgebra of g_{0}. Let us fix arbitrarily a maximal abelian subalgebra \mathfrak{h}_{0}^{-}of \mathfrak{p}_{0}. Let g and \mathfrak{h}^{-}be the complexifications of g_{0} and \mathfrak{h}_{0}^{-}respectively. Introduce a lexicographic order in the set of all roots of \mathfrak{g} with respect to \mathfrak{g}^{-}and let Δ be the set of all positive roots of g.

Fix an element $h_{0} \neq 0$ of \mathfrak{G}_{0}^{-}and let Δ^{\prime} be the set of all roots $\alpha \in \Delta$ zero at \boldsymbol{h}_{0} and $\Delta^{\prime \prime}$ the complement of Δ^{\prime} in Δ. Let $\mathfrak{y}_{0}^{\prime}$ be the subalgebra of \mathfrak{H}_{0}^{-}orthogonal to Δ^{\prime}. Consider the centralizer S of $\mathfrak{H}_{0}^{\prime}$ in G. Let S_{1} be a subgroup of S and let $s \rightarrow L_{s}\left(s \in S_{1}\right)$ be a representation of S_{1} by bounded operaters on a Hilbert space E. If S_{1} and L fulfill some conditions, we can construct canonically a representation of G on a certain Hilbert space, starting from L (see §1). After F. Bruhat [1] we call it induced representation of L and denote it by T^{L}. He has studied in [1] a criterion of the irreducibility of T^{L}, when L is of finite-dimensional. Our present purpose is (1) to obtain a sufficient condition on S_{1} and L for the existence of the characters of both L and T^{L}, and (2) to express the character of T^{L} by that of L in the form of summation. This has been done in very special cases in [2], [3], and [4(b)].
§ 1. Induced representations. Let c_{0} be the center of \mathfrak{f}_{0} and put $\mathfrak{f}_{0}^{\prime}=\left[\mathfrak{f}_{0}, \mathfrak{f}_{0}\right]$, then $\mathfrak{f}_{0}=\mathfrak{c}_{0}+\mathfrak{f}_{0}^{\prime}$. For any $\alpha \in \Delta$, let g_{α} be the set of all elements \boldsymbol{x} of g which fulfill

$$
[\boldsymbol{h}, \boldsymbol{x}]=\alpha(\boldsymbol{h}) \boldsymbol{x} \quad\left(\boldsymbol{h} \in \mathfrak{h}^{-}\right) .
$$

Put $\mathfrak{n}=\sum_{\alpha \in A} \mathfrak{g}_{\alpha}, \mathfrak{n}^{\prime}=\sum_{\alpha \in d^{\prime \prime}} \mathfrak{g}_{\alpha}, \mathfrak{n}_{0}=\mathfrak{n} \cap g_{0}$, and $\mathfrak{n}_{0}^{\prime}=\mathfrak{n}^{\prime} \cap g_{0}$. Then \mathfrak{n}_{0} and $\mathfrak{n}_{0}^{\prime}$ are subalgebras of g_{0}. Let $K, H^{-}, D, K^{\prime}, N$, and N^{\prime} be the analytic subgroups of G corresponding to $\mathfrak{f}_{0}, \mathfrak{H}_{0}^{-}, \mathfrak{c}_{0}, \mathfrak{f}_{0}^{\prime}, \mathfrak{n}_{0}$, and $\mathfrak{n}_{0}^{\prime}$ respectively. Then $G=N H^{-} K$ is Iwasawa decomposition of G.

We assume that the subgroup S_{1} fulfills that

$$
S^{0}(D \cap Z) \subset S_{1} \subset S
$$

where S^{0} is the connected component of the identity element of S and Z is the center of G. Moreover we assume on L that L_{z} is a scalar

