141. The Characters of Some Induced Representations of Semisimple Lie Groups

By Takeshi HIRAI Department of Mathematics, Kyoto University (Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1968)

Introduction. Let G be a simply connected semisimple Lie group. Let g_0 be its Lie algebra and let $g_0 = \mathfrak{k}_0 + \mathfrak{p}_0$ be a Cartan decomposition of g_0 , where \mathfrak{k}_0 is a maximal compact subalgebra of g_0 . Let us fix arbitrarily a maximal abelian subalgebra \mathfrak{h}_0^- of \mathfrak{p}_0 . Let g and \mathfrak{h}^- be the complexifications of g_0 and \mathfrak{h}_0^- respectively. Introduce a lexicographic order in the set of all roots of g with respect to \mathfrak{h}^- and let \varDelta be the set of all positive roots of g.

Fix an element $h_0 \neq 0$ of \mathfrak{h}_0^- and let Δ' be the set of all roots $\alpha \in \Delta$ zero at h_0 and Δ'' the complement of Δ' in Δ . Let \mathfrak{h}_0' be the subalgebra of \mathfrak{h}_0^- orthogonal to Δ' . Consider the centralizer S of \mathfrak{h}_0' in G. Let S_1 be a subgroup of S and let $s \to L_s$ $(s \in S_1)$ be a representation of S_1 by bounded operaters on a Hilbert space E. If S_1 and L fulfill some conditions, we can construct canonically a representation of G on a certain Hilbert space, starting from L (see § 1). After F. Bruhat [1] we call it induced representation of L and denote it by T^L . He has studied in [1] a criterion of the irreducibility of T^L , when L is of finite-dimensional. Our present purpose is (1) to obtain a sufficient condition on S_1 and L for the existence of the characters of both Land T^L , and (2) to express the character of T^L by that of L in the form of summation. This has been done in very special cases in [2], [3], and [4(b)].

§1. Induced representations. Let c_0 be the center of \check{t}_0 and put $\check{t}_0' = [\check{t}_0, \check{t}_0]$, then $\check{t}_0 = c_0 + \check{t}_0'$. For any $\alpha \in \Delta$, let g_α be the set of all elements x of g which fulfill

$$[h, x] = \alpha(h)x \quad (h \in \mathfrak{h}^-).$$

Put $\mathfrak{n} = \sum_{\alpha \in \mathcal{A}} \mathfrak{g}_{\alpha}$, $\mathfrak{n}' = \sum_{\alpha \in \mathcal{A}''} \mathfrak{g}_{\alpha}$, $\mathfrak{n}_0 = \mathfrak{n} \cap \mathfrak{g}_0$, and $\mathfrak{n}'_0 = \mathfrak{n}' \cap \mathfrak{g}_0$. Then \mathfrak{n}_0 and \mathfrak{n}'_0 are subalgebras of \mathfrak{g}_0 . Let K, H^-, D, K', N , and N' be the analytic subgroups of G corresponding to \mathfrak{k}_0 , \mathfrak{h}_0^- , \mathfrak{c}_0 , \mathfrak{k}'_0 , \mathfrak{n}_0 , and \mathfrak{n}'_0 respectively. Then $G = NH^-K$ is Iwasawa decomposition of G.

We assume that the subgroup S_1 fulfills that

$$S^{0}(D \cap Z) \subset S_{1} \subset S,$$

where S^0 is the connected component of the identity element of S and Z is the center of G. Moreover we assume on L that L_z is a scalar