139. A Note on Inverse Images of Closed Mappings

By F. G. SLAUGHTER, Jr. The University of Pittsburgh

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1968)

This paper is concerned with three results pertaining to the following problem. Given a mapping f in class C with the range of fin class \mathcal{D} , when will the domain of f be in class \mathcal{C} ? In case f is a closed continuous mapping onto a paracompact Hausdorff space, S. Hanai [2, Theorem 5, p. 302] has given necessary and sufficient conditions for the domain of f to be normal. In Theorem 1, we provide another proof for Hanai's result, and in Theorem 2, under the same hypothesis on f, we obtain analagous necessary and sufficient conditions for the domain of f to be collectionwise normal. Under fairly restrictive hypothesis, Theorem 4 gives necessary and sufficient conditions for the domain of a mapping to be an M-space in the sense of Morita [6, p. 379].

In what follows, all mappings are assumed to be continuous. As usual, if X is a set, $\mathcal{F} = \{F_{\alpha} : \alpha \in A\}$ a collection of subsets of X, and $S \subseteq X$, we let $\mathcal{F} \mid S = \{F_{\alpha} \cap S : \alpha \in A\}$.

Let f be a mapping from X to the T_1 space Y, C a closed subset of X, and m a cardinal number. f satisfies condition γ_m at C iff for any discrete collection $\{C_{\alpha} : \alpha \in A\}$ of $\leq m$ closed subsets of C, there exists a pairwise disjoint open collection $\{U_{\alpha} : \alpha \in A\}$ such that $C_{\alpha} \subseteq U_{\alpha}$ for all α . If f satisfies condition γ_m at C for all cardinals m, we say that f satisfies condition γ at C.

Lemma 1.1. Let f be a closed mapping from the topological space X onto the T_1 regular space Y. Suppose that f satisfies condition γ_2 at $f^{-1}(y)$ for all y in Y. Then for any y in Y, closed subset C of $f^{-1}(y)$, and open set U containing C, there exists an opeu set V such that $C \subseteq V \subseteq \overline{V} \subseteq U$.

Proof. Let the closed set C of $f^{-1}(y)$ be contained in the open set 0. Using condition γ_2 , choose open sets W_1 and W_2 of X containing C and $(X-0) \cap f^{-1}(y)$ respectively. Then $K=(X-0)-W_2$ is closed and misses $f^{-1}(y)$. Hence by regularity of Y, choose an open set P of Y with $y \in P \subseteq \overline{P} \subseteq Y - f(K)$. If $V = W_1 \cap f^{-1}(P)$, then V is as desired.

Theorem 1. Let f be a closed mapping from the topological space X onto the paracompact Hausdorff space Y. X is normal iff f satisfies condition γ_2 at $f^{-1}(y)$ for all y in Y.