137. Characteristic Classes for Spherical Fiber Spaces¹⁾

By Akihiro TSUCHIYA

Department of Mathematics, Kyoto University, Kyoto

(Comm. by Zyoiti SUETUNA, M.J.A., Sept. 12, 1968)

1. Statement of results. Let $SF = SG = \lim SG(n), SG(n) = \{f : S^n\}$ \rightarrow degree 1}, B_{SF} be the classifying space of SF. Our purpose is to determine $H_*(B_{SF}, Z_p)$ as a Hopf-algebra over Z_p , where p is an odd prime number. Coefficient is always Z_p , and we omit it in the sequel. Let $Q_0(S^0) = \lim \Omega_0^n S^n$. Then $Q_0(S^0)$ has the same homotopy type of SF. Let $i: Q_0(S^0) \rightarrow SF$ be the homotopy equivalence. Dyer-Lashof determined $H_*(Q_0(S^0))$ as an algebra over Z_p . $H_*(Q_0(S^0))$ is a free commutative algebra generated by $x_J, J \in H$, where $H = \{J = (\varepsilon_1, j_1, \dots, \varepsilon_r, j_r)\}$ satisfies the following properties: 1) $r \ge 1$, 2) $j_i \equiv 0$, (p-1), 3) $j_r \equiv 0$ (2(p-1)), 4) $(p-1) \le j_1 \le j_2 \cdots \le j_r$ 5), $\varepsilon_i = 0$ or 1, 6) if $\varepsilon_{i+1} = 0$ then $j_i/(p-1)$ and $j_{i+1}/(p-1)$ are even parity, if $\varepsilon_{i+1}=1$ then $j_i/(p-1)$ and $j_{i+1}/(p-1)$ are odd parity. There is a continuous map $h_0: L_p \rightarrow Q_0(S^0)$, and $x_j \equiv h_{0*}(e_{2j(p-1)})$, where $e_i \in H_i(L_p)$ is a generator, and x_I $\equiv x_{(\epsilon_1, j_1, \dots, \epsilon_r, j_r)} \equiv \beta_p^{\epsilon_1} Q_{j_1} \cdots \beta_p^{\epsilon_r - 1} Q_{j_{r-1}} \beta_p^{\epsilon_r} x_{j_r}, \text{ where } Q_j \text{ is the extended}$ power operation defined by Dyer-Lashof. We identify $H_*(Q_0(S^0))$ and $H_*(SF)$ by i_* as a Z_p -module and we denote $\tilde{x} = i_*(x)$, if $x \in H_*(Q_0(S^0))$.

Theorem 1. $H_*(SF)$ is a free commutative algebra generated by \tilde{x}_J ; $J \in H$. Even though i_* is not a ring homomorphism.

Let H_1 be the subset of H consisting of $J = (\varepsilon_1, j_1, \dots, \varepsilon_r, j_r)$, such that $j_1 \neq p-1$, and $r \geq 2$. Let $H_2 = \{(\varepsilon, p-1, 1, j)\} \subseteq H$. And let $H_i^+ = \{J \in H_i, \deg(x_j) = \operatorname{even}\}, H_i^- = \{J \in H_i, \deg(x_j) = \operatorname{odd}\} i = 1, 2, \dots$. Let $j; B_{SO} \to B_{SF}$ be the inclusion map. Then by Peterson-Toda, $H_*(B_{SO})/\ker j^* \cong Z_p[z_1, z_2, \dots]$, where $\deg(z_j) = 2j(p-1)$, and $\Delta(z_j) = \sum_{j_1+j_2=j} z_{j_1} \otimes z_{j_2}, z_j = 1$. Let $\tilde{z}_j = j_*(Z_j) \in H(B_{SF})$.

Theorem 2. $H_*(B_{SF}) = Z_p[\tilde{z}_1, \tilde{z}_2, \cdots] \otimes \Lambda(\sigma \tilde{x}_1, \sigma \tilde{x}_2, \cdots) \otimes C_*$. C_* is a free commutative algebra generated by $\tilde{x}_J, J \in H_1 \cup H_2$. $\sigma; H_*(SF) \rightarrow H_*(B_{SF})$ is suspension. $\sigma \tilde{x}_j, \sigma \tilde{x}_J$ are primitive elements, and $\Delta(\tilde{z}_j) = \sum_{j_1+j_2=j} \tilde{z}_{j_1} \otimes \tilde{z}_{j_2}$.

 $\begin{array}{l} \overset{_{j_1+j_2=j}}{H^*(B_{SF})=Z_p[q_1,q_2,\cdots]\otimes \Lambda(\varDelta q_1,\varDelta q_2,\cdots)\otimes C. \quad C=\underset{_{I\in H_1^+\cup H_2^+}}{\otimes} \Lambda((\sigma \tilde{x}_I)^*) \\ & \bigotimes_{_{J\in H_1^-\cup H_2^+}} \Gamma_p[(\sigma \tilde{x}_J)^*], \text{ where } (\quad)^* \text{ denotes dual elements, where } q_j \text{ is the } \\ j\text{-th } Wu\text{-class, } j=1, 2, \cdots. \end{array}$

¹⁾ The author was partially supported by the Sakkokai Foundation.