No. 7]

132. Real-valued Measurable Cardinals and $\sum_{i=1}^{1}$ -Transcendency of Cardinals^{*})

Ву Капјі NAMBA

Department of Mathematics, Tokyo University of Education

(Comm. by Zyoiti SUETUNA, M.J.A., Sept. 12, 1968)

In this paper, we shall prove \sum_{1}^{1} -transcendency of cardinals¹⁾ under the assumption of existence of real-valued measurable cardinal,²⁾ applying the results and difinitions used in [2] and [3].

Let I be an ideal over a set A. The equivalence relation between two subsets B and C of A is defined by

$$B \sim C \equiv B - C - B \in I \land B - C \in I.$$

By [B] we donote the equivalence class including B. And [A] and $[\phi]$ are sometimes abbreviated as 1 and 0 respectively. The relation [B] > [C] is defined by $[B] > [C] \equiv BC \notin I \land C - B \in I$.

An ideal I is called a-complete if

 $[A_{\nu}]=0$ for all $\nu < a$ implies $[\bigcup A_{\nu}]=0$.

The character of I is defined to be the smallest ordinal a such that I is not a-complete, and it is denoted by ch(I).

An ideal I is called *a*-saturated if

 $[A_{\nu}] > 0$, $[A_{\nu} \cap A_{\mu}] = 0$ for all $\nu \neq \mu$, and ν , $\mu < b$ imply b < a.

The saturation number of I is defined to be the smallest ordinal a such that I is a-saturated, and it is denoted by sat(I).

Let *I* be an ideal over \aleph_r . And let \mathfrak{A} be a set of functions in On^{\aleph_r} (On is the class of all ordinal numbers). A function *f* is said to be incompressible (cf. [3]) with respect to \mathfrak{A} if the following conditions are satisfied :

(1) $[\{\nu: g(\nu) < f(\nu)\}] = 1$ for every $g \in \mathfrak{A}$,

(2) if $[\{\nu : h(\nu) < f(\nu)\}] > 0$, then, $[\{\nu : h(\nu) \le g(\nu)\}] > 0$ for some $g \in \mathfrak{A}$.

The following lemma is proved easily. (cf. [3]).

Lemma 1. Let I be an ideal over \aleph_{τ} such that $\operatorname{sat}(I) \leq \operatorname{ch}(I)$ $(\aleph_0 < \operatorname{ch}(I))$. And let \mathfrak{A} be a set of functions in $\operatorname{On}^{\aleph_{\tau}}$. Then there is an incompressible function with respect to \mathfrak{A} .

Now we shall define a function $a^* \in On^{\aleph_r}$ by the induction on a as one of incompressible functions with respect to $\{b^* : b < a\}$. And $a^*(\nu)$

^{*)} This work is partially supported by Matsunaga Science Foundation.

¹⁾ Cf. [2], [5].

²⁾ Cf. [3], [6].