128. A Milnor Conjecture on Spin Structures

By Seiya SASAO

Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kenjiro SHODA, M.J.A., Sept. 12, 1968)

Let ξ denote a principal SO(n)-bundle over a CW-complex B and let $E(\xi)$ denote the total space of ξ . A spin structure on ξ is a pair (η, f) which satisfies

(1) A principal bundle η over B with the spinor group Spin(n) as structural group; and

(2) A map $f: E(\eta) \rightarrow E(\xi)$ such that the following diagram is commutative.

$$\begin{array}{c}
E(\eta) \times \operatorname{Spin}(n) \to E(\eta) \\
\downarrow^{f \times \lambda} & \downarrow^{f} \\
E(\xi) \times SO(n) \longrightarrow E(\xi)
\end{array} \xrightarrow{} B.$$

Here λ denotes the standard homomorphism from Spin(*n*) to SO(n) and horizontal lines denote the right translation. A second spin structure (η', f') on ξ is identified with (η, f) if there exists an isomorphism g from η' to η so that $f \circ g = f'$. Then J. Milnor stated the following conjecture [1, pp. 198-203]:

If (η, f) and (η', f') are two spin structures on the same SO(n)bundle, with $n > \dim B$, then η is necessarily isomorphic to η' .

In this note we shall present the affirmative answer when B is compact connected. By Milnor we have the following

Lemma [1, p. 199]: If ξ admits a spin structure then the number of distinct spin structures on ξ is equal to the number of elements in $H^1(B; \mathbb{Z}_2)$.

Now the following lemma is clear.

Lemma 1. If ξ admits two spin structures (η, f) and (η', f') such that η is isomorphic to η' then there exists a spin structure (η, f') on ξ which is isomorphic to (η', f') .

Let p_{ξ} denote the projection map of the bundle ξ . If two spin structures (η, f_1) , (η, f_2) are given, from $p_{\eta} = p_{\xi} f_1 = p_{\xi} f_2$, we have a map $g: E(\eta) \rightarrow SO(n)$ defined by $f_1(x) = f_2(x) \cdot g(x)$ for $x \in E(\eta)$. Here \cdot denotes the right translation. Clearly g satisfies $g(x \cdot h) = \lambda(h)^{-1} \times g(x)$ $\times \lambda(h)$ for $h \in \text{Spin}(n)$ where \times denotes the group multiplication. Conversely g is a map as above and let (η, f) be a spin structure on ξ . Then $(\eta, f \cdot g)^{(1)}$ is also a spin structure on ξ . And moreover let g' be another map such as g. Then $(\eta, f \cdot g)$ is isomorphic to $(\eta, f \cdot g')$ if

¹⁾ Of course the map $f \cdot g$ is defined by $(f \cdot g)(x) = f(x) \cdot g(z)$.