127. II-imbeddings of Homotopy Spheres

By Kiyoshi Katase
(Comm. by Kenjiro Shoda, M. J. A., Sept. 12, 1968)

1. Let Θ_{n} be the group of homotopy n-spheres and let us consider the π-imbedding (i.e., imbedding with a trivial normal bundle) of $\tilde{S}^{n} \in \Theta_{n}$ in the ($n+k$)-dimensional euclidean space R^{n+k}.

If \tilde{S}^{n} is π-imbeddable in R^{n+k}, then the connected sum $\tilde{S}^{n} \# \tilde{S}^{n}$ is also π-imbeddable in R^{n+k}. Thus we want to determine the smallest codimension with which the generator \tilde{S}_{0}^{n} of Θ_{n} is π-imbeddable.

In [1], W. C. Hsiang, J. Levine, and R. H. Szczarba showed that every homotopy n-sphere is π-imbeddable in R^{n+k} if $k \geqq n-2$ for all n or $k>\frac{n+1}{2}$ for $n \leqq 15$. They also showed that $\tilde{S}_{0}^{16}\left(\in \Theta_{16} \cong Z_{2}\right)$ is not π-imbeddable in R^{29}.

Now, owing to the classification theorem of S. P. Novikov [6], we can calculate the number of the differentiable structures of a direct product of spheres and this gives us some informations on our problem. In this way, we obtain the following results.

n	8	9	10	13	14	15	16	17
order of Θ_{n}	2	8	6	3	2	16256	2	16
order of $\Theta_{n}(\partial \pi)$	1	2	1	1	1	8128	1	2
k	4	4	$4 \sim 6$	$3 \sim 4$	$? \sim 8$	$3 \sim 4$	14	$? \sim 13$

(k is the smallest codimension with which the generator of Θ_{n} is π-imbeddable.)
If $\Theta_{n}=0$ or $\Theta_{n}(\partial \pi)$, then $k=1$ or 2 respectively ([3], Theorem I).
2. Lemma 1. If $\tilde{S}^{n}(n \geqq 5)$ is π-imbeddable in R^{n+k}, then \tilde{S}^{n} $\times S^{k-1}$ is diffeomorphic to $S^{n} \times S^{k-1}$.

The proof is the same as that of Theorem 5.2 in [7].
Conversely, we have
Lemma 2. If $\tilde{S}^{n} \times S^{k-1}$ and $S^{n} \times S^{k-1}$ are diffeomorphic modulo a point, then \tilde{S}^{n} is π-imbeddable in R^{n+k}.

Proof. Since ($\tilde{S}^{n} \times S^{k-1}$) \# \tilde{S}^{n+k-1} is diffeomorphic to $S^{n} \times S^{k-1}$ and \tilde{S}^{n+k-1} can be summed to $\tilde{S}^{n} \times S^{k-1}$ away from $\tilde{S}^{n} \times x_{0}$ for some point $x_{0} \in S^{k-1}$, the imbedding

$$
\tilde{S}^{n} \subset\left(\tilde{S}^{n} \times S^{k-1}\right) \# \tilde{S}^{n+k-1} \approx S^{n} \times S^{k-1} \subset R^{n+k}
$$

has a trivial normal bundle.

