127. *Π*-imbeddings of Homotopy Spheres

By Kiyoshi KATASE

(Comm. by Kenjiro SHODA, M.J.A., Sept. 12, 1968)

1. Let Θ_n be the group of homotopy *n*-spheres and let us consider the π -imbedding (i.e., imbedding with a trivial normal bundle) of $\tilde{S}^n \in \Theta_n$ in the (n+k)-dimensional euclidean space R^{n+k} .

If \tilde{S}^n is π -imbeddable in R^{n+k} , then the connected sum $\tilde{S}^n \# \tilde{S}^n$ is also π -imbeddable in R^{n+k} . Thus we want to determine the smallest codimension with which the generator \tilde{S}_0^n of Θ_n is π -imbeddable.

In [1], W. C. Hsiang, J. Levine, and R. H. Szczarba showed that every homotopy *n*-sphere is π -imbeddable in \mathbb{R}^{n+k} if $k \ge n-2$ for all *n* or $k > \frac{n+1}{2}$ for $n \le 15$. They also showed that $\tilde{S}_0^{16} (\in \Theta_{16} \cong \mathbb{Z}_2)$ is not π -imbeddable in \mathbb{R}^{29} .

Now, owing to the classification theorem of S. P. Novikov [6], we can calculate the number of the differentiable structures of a direct product of spheres and this gives us some informations on our problem. In this way, we obtain the following results.

n	8	9	10	13	14	15	16	17
$\begin{array}{c} \text{order of} \\ \Theta_n \end{array}$	2	8	6	3	2	16256	2	16
$\begin{array}{c} \text{order of} \\ \Theta_n(\partial\pi) \end{array}$	1	2	1	1	1	8128	1	2
k	4	4	4~6	$3 \sim 4$?~8	$3 \sim 4$	14	$?\sim 13$

(k is the smallest codimension with which the generator of Θ_n is π -imbeddable.) If $\Theta_n = 0$ or $\Theta_n(\partial \pi)$, then k=1 or 2 respectively ([3], Theorem I).

2. Lemma 1. If $\tilde{S}^n(n\geq 5)$ is π -imbeddable in \mathbb{R}^{n+k} , then $\tilde{S}^n \times S^{k-1}$ is diffeomorphic to $S^n \times S^{k-1}$.

The proof is the same as that of Theorem 5.2 in [7]. Conversely, we have

Lemma 2. If $\tilde{S}^n \times S^{k-1}$ and $S^n \times S^{k-1}$ are diffeomorphic modulo a point, then \tilde{S}^n is π -imbeddable in R^{n+k} .

Proof. Since $(\tilde{S}^n \times S^{k-1}) \# \tilde{S}^{n+k-1}$ is diffeomorphic to $S^n \times S^{k-1}$ and \tilde{S}^{n+k-1} can be summed to $\tilde{S}^n \times S^{k-1}$ away from $\tilde{S}^n \times x_0$ for some point $x_0 \in S^{k-1}$, the imbedding

$$ilde{S}^n \subset (ilde{S}^n imes S^{k-1}) \# ilde{S}^{n+k-1} \cong S^n imes S^{k-1} \subset R^{n+k}$$

has a trivial normal bundle.