177. On Extension of Semifield Valued Linear Functionals

By Kiyoshi Iséki
(Comm. by Kinjirô Kunugi, M. J. A., Oct. 12, 1968)

In their book [1], M. Antonovski, V. Boltjanski, and T. Sarymsakov introduced a new notion called topological semifield. The present author and S. Kasahara [2] obtained a theorem of Hahn-Banach type for a semifield valued functional. M. Kleiber and W. Pervin generalized our result in their paper [4].

In this note, we shall generalize a theorem by V. Klee [3].
Let E be a real linear space, and \mathfrak{I} a set of linear transformations of E into E. Let p be a semifield valued subadditive functional on E, i.e., $p(x+y) \ll p(x)+p(y), p(\alpha x)=\alpha p(x)$ for $\alpha \geq 0$.

For each $x \in E$, put

$$
q(x)=\inf \left\{p\left(x+\sum_{i=1}^{k} T_{i} z_{i}\right) \mid T_{i} \in \mathfrak{I}, y_{i} \in E, k \text { is any positive integer }\right\}
$$

Let $f(x)$ be a semifield valued linear functional defined on a linear subspace E_{f} of E satisfying $f(x) \ll q(x)$. Then

$$
0=f(0) \ll q(0) \ll p\left(\sum_{i=1}^{k} T_{i} z_{i}\right) \ll p(-x)+p\left(x+\sum_{i=1}^{k} T_{i} z_{i}\right) .
$$

Hence $0 \ll p(-x)+q(x)$, which shows that q is well-defined on $E . \quad q(x)$ is a semifield valued positive homogeneous functional. Let $x, y \in E$, then for any saturated neighborhood U of 0 in the semifield S, we can take V, T_{i}, z_{i} such that

$$
\begin{aligned}
& p\left(x+\sum_{i=1}^{k} T_{i} z_{i}\right) \ll q(x)+V \\
& p\left(y+\sum_{i=k+1}^{n} T_{i} z_{i}\right) \ll q(y)+V \\
& V+V \subset U
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
q(x+y) & \ll p\left(x+\sum_{i=1}^{k} T_{i} z_{i}+y+\sum_{i=k+1}^{n} T_{i} z_{i}\right) \\
& \ll p\left(x+\sum_{i=1}^{k} T_{i} z_{i}\right)+p\left(y+\sum_{i=k+1}^{n} T_{i} z_{i}\right) \\
& \ll q(x)+q(y)+V+V \\
& \ll q(x)+q(y)+U .
\end{aligned}
$$

Hence we have $q(x+y) \ll q(x)+q(y)$. By the Hahn-Banach type extension theorem for a semifield valued functional (see K. Iséki and S. Kasahara [1]), we can find a linear functional F satisfying $F=f$ on E_{f}, and $F \ll q$ on E. Then

$$
F(T z) \ll p(T z+T(-z))=p(0)=0 .
$$

