172. Semigroups Satisfying $xy^m = yx^m = (xy^m)^n$

By D. G. MEAD and Takayuki TAMURA University of California, Davis, California (Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1968)

Recently E. J. Tully [5] determined the semigroups satisfying an identity of the form $xy = y^m x^n$; Tamura [4], one of the authors, studied the semigroups satisfying an identity $xy = y^{m_1}x^{n_1}\cdots y^{m_k}x^{n_k}$; and Mead [2], the other author, found a necessary and sufficient condition in order that an implication, $x^n y^m = y^k x^l \rightarrow x^n y^m = y^n x^m$, hold in all semigroups. Related to these works the purpose of this paper is to find the structure of semigroups satisfying an identity of the form

$$(*) \qquad xy^m = yx^m = (xy^m)^n, \qquad n > 1.$$

Let L be a semilattice and $\{S_{\alpha} : \alpha \in L\}$ be a family of disjoint semigroups. If a semigroup S is a union of disjoint subsemigroups $S'_{\alpha}, \alpha \in L$, and if S'_{α} is isomorphic with S_{α} for all α and $S'_{\alpha}S'_{\beta} \subseteq S'_{\alpha\beta}$ for all $\alpha, \beta \in L$, then S is called a semilattice-union of $S_{\alpha}, \alpha \in L$, or a semilattice of $S_{\alpha}, \alpha \in L$. A semigroup S is called a Clifford semigroup if S is a union of groups.

Lemma. A Clifford semigroup S is commutative if and only if S is a semilattice-union of abelian groups.

Proof. S is a semilattice-union of completely simple semigroups S_{α} by Theorem 4.6 [1]. Since S is commutative, each S_{α} is an abelian group. The converse is obtained from Theorem 4.11 [1].

Let I be an ideal of a semigroup S and $S/I \cong Z$. Then S is called an ideal extension of I by Z.

Theorem. The following three statements are equivalent.

(1) A semigroup S satisfies the identity (*).

(2) A semigroup S contains a commutative Clifford subsemigroup M and satisfies

- (2.1) $x^{k+1}=x$ for all $x \in M$, where k is the greatest common divisor of m-1 and n-1.
- (2.2) $xy^m \in M$ for all $x, y \in S$.

(3) A semigroup S is a semilattice-union of semigroups S_{α} , $\alpha \in L$, such that each S_{α} is an ideal extension of a group G_{α} by Z_{α} and the following conditions are satisfied:

(3.1) Each G_{α} is abelian and satisfies $x^{k} = e$ for all $x \in G_{\alpha}$, where e is the identity element of G_{α} , k being defined in (2.1).