170. On Extensions with Given Ramification

By Toyofumi Takahashi
Mathematical Institute Tôhoku University, Sendai
(Comm. by Kenjiro Shoda, m. J. A., Oct. 12, 1968)

Let k be a number field of finite degree, and let S be a set of primes of k, including the achimedean ones. Let G be the Galois group of the maximal extension Ω of k unramified outside S. Throughout this paper we assume that S contains all primes above a fixed prime number l. Tate [7] has asserted that G has strict cohomological dimension 2 with respect to l, if k is totally imaginary in case $l=2$, but the proof has been unpublished. (Brumer [3] showed that G has cohomological dimension 2 with respect to l under the same assumptions.) We shall give here the proof of the above Tate's theorem (Section 1). As a corollary of this theorem, we obtain an arithmetic theorem and we get the l-adic independence of independent units (Section 2). Finally, we shall determine the structure of the connected component of the S idèle class group. This is a generalization of the results of Weil [10] and Artin [1] (see also [2 ; Chap. IX]).

1. Cohomological dimension. Throughout this paper notations and terminologies are the same as in Tate [7]. By m we shall always understand a positive integer such that $m k_{S}=k_{S}$ where k_{S} is the ring of all S-integers of k. For any abelian group A, let $A(l)$ denote the l-torsion part of A. Let μ denote the group of all roots of unity, and let μ_{m} denote the group of m-th roots of unity.

Theorem 1. Let \bar{J}^{S} denote the projection to S_{0} of the idèle group of Ω, where S_{0} is the set of non-archimedean primes in S. We put E $=\bar{J}^{s}(l) / \mu(l)$. Suppose that k is totally imaginary if $l=2$. Then, for any l-torsion module M, we have an isomorphism

$$
H^{2}\left(k_{S}, M\right)^{*} \cong \operatorname{Hom}_{G}(M, E)
$$

Proof. By our assumptions G has cohomological l-dimension 2. Let \bar{E} be a module dualisant for G with respect to l. We shall show $E=\bar{E}$. By [5; Chap. I, Annexe] we have $\bar{E}=\underset{t}{\lim } D_{2}\left(\boldsymbol{Z} / l^{t} \boldsymbol{Z}\right)$ where $D_{2}(\boldsymbol{Z} / m \boldsymbol{Z})=\underset{\underset{K \subset \Omega}{\longrightarrow}}{\lim } H^{2}\left(K_{S}, \boldsymbol{Z} / m \boldsymbol{Z}\right)^{*}$, the inductive limit is taken with respect to cores*. By Tate's duality theorem, we have a commutative exact diagram

