170. On Extensions with Given Ramification

By Toyofumi TAKAHASHI Mathematical Institute Tôhoku University, Sendai (Comm. by Kenjiro SHODA, M.J.A., Oct. 12, 1968)

Let k be a number field of finite degree, and let S be a set of primes of k, including the achimedean ones. Let G be the Galois group of the maximal extension Ω of k unramified outside S. Throughout this paper we assume that S contains all primes above a fixed prime number l. Tate [7] has asserted that G has strict cohomological dimension 2 with respect to l, if k is totally imaginary in case l=2, but the proof has been unpublished. (Brumer [3] showed that G has cohomological dimension 2 with respect to l under the same assumptions.) We shall give here the proof of the above Tate's theorem (Section 1). As a corollary of this theorem, we obtain an arithmetic theorem and we get the l-adic independence of independent units (Section 2). Finally, we shall determine the structure of the connected component of the Sidèle class group. This is a generalization of the results of Weil [10] and Artin [1] (see also [2; Chap. IX]).

1. Cohomological dimension. Throughout this paper notations and terminologies are the same as in Tate [7]. By m we shall always understand a positive integer such that $mk_s = k_s$ where k_s is the ring of all S-integers of k. For any abelian group A, let A(l) denote the *l*-torsion part of A. Let μ denote the group of all roots of unity, and let μ_m denote the group of m-th roots of unity.

Theorem 1. Let \overline{J}^s denote the projection to S_0 of the idèle group of Ω , where S_0 is the set of non-archimedean primes in S. We put $E = \overline{J}^s(l)/\mu(l)$. Suppose that k is totally imaginary if l=2. Then, for any l-torsion module M, we have an isomorphism

$$H^2(k_s, M)^* \cong \operatorname{Hom}_G(M, E).$$

Proof. By our assumptions G has cohomological *l*-dimension 2. Let \overline{E} be a module dualisant for G with respect to *l*. We shall show $E = \overline{E}$. By [5; Chap. I, Annexe] we have $\overline{E} = \lim_{t \to T} D_2(\mathbb{Z}/l^t\mathbb{Z})$ where $D_2(\mathbb{Z}/m\mathbb{Z}) = \lim_{K \subset \overline{B}} H^2(K_s, \mathbb{Z}/m\mathbb{Z})^*$, the inductive limit is taken with respect to cores*. By Tate's duality theorem, we have a commutative exact

to cores*. By Tate's duality theorem, we have a commutative exact diagram