211. Generalizations of the Stone-Weierstrass Approximation Theorem^{*)}

By Chien WENJEN California State College at Long Beach, U.S.A. (Comm. by Kinjirô KUNUGI, M.J.A., Nov. 12, 1968)

The celebrated Stone-Weierstrass theorem for the continuous functions on compact Hausdorff spaces has been extended to those on more general spaces [1], [3], [4], [8]. The purpose of the present note is to present some generalizations of the theorem and the Stone-Tietze extension theorem to the vector-valued continuous functions on completely regular spaces.

Let X be a completely regular space, C(X, K) the algebra of all complex continuous functions (bounded or unbounded) on X and $\mathfrak{M}(C(X, K))$ the maximal ideal space of C(X, K). We recall two results proved in [10], [11]: (1) $\mathfrak{M}(C(X, K))$ endowed with Stone topology (hull-kernel) is homeomorphic to the Stone-Čech compactification βX and (2) each $f \in C(X, R)$ can be extended to a continuous function \tilde{f} over βX with values in $[-\infty, \infty]$. The set of all \tilde{f} for $f \in C(X, K)$ is denoted by $\tilde{C}(X, K)$.

Definition 1. Let X be a completely regular space and S a subset of C(X, K). A function $f \in C(X, K)$ is said to be a limit point of S under uniform topology if f can be uniformly approximated by the functions in S on subsets of X on which f is bounded.

Lemma 1. Let X be a completely regular space and C(X, R) the algebra of all real continuous functions on X. If a subalgebra S of C(X, R) contains the identity element and separates $\mathfrak{M}(C(X, R))$, then S is dense in C(X, R) under uniform topology. The same result holds for C(X, R) if S is selfadjoint.

Proof. By the classical Weierstrass theorem ([9], p. 175) there exists a polynomial $P_n(t)$ such that $||t| - P_n(t)| < 1/n$ for $t \in [-n, n]$. Then $||f(x)| - P_n(f(x))| < 1/n$ if $|f(x)| \le n$ and $f \in S$ implies $|f| \in \overline{S}$, the closure of S. \overline{S} is therefore a lattice and all $f_m = (f \land m) \lor (-m)$ for positive integers m and $f \in \overline{S}$ belongs to \overline{S} . It follows that the bounded functions in \overline{S} separates the compact Hausdorff space $\mathfrak{M}(C(X, R))$ and all bounded real continuous functions on X are elements of \overline{S} as a consequence of the Stone-Weierstrass theorem. Since

^{*)} Presented to the Amer. Math. Soc. (1968) under the title: "Rings of continuous vector-valued functions". The work was supported in part by the faculty research grant of California State College at Long Beach.