194. On Free Contents

By Takayuki Tamura
University of California, Davis, California, U.S.A.

(Comm. by Kenjiro Shoda, m. J. A., Nov. 12, 1968)

1. Introduction. An S-indecomposable semigroup is a semigroup which has no semilattice-homomorphic image except a trivial one. We will call an S-indecomposable semigroup $\mathfrak{\beta}$-simple in the sense that a semigroup S is S-indecomposable if and only if it has no prime ideal, that is, S has no ideal I such that $I \neq S$ and $S \backslash I$ is a subsemigroup of S (cf. [1]).

Let S be a semigroup. Let a_{1}, \cdots, a_{n} be a finite number of elements of S. All the elements x of S each of which is the product of all of a_{1}, \cdots, a_{n} (admitting repeated use) form a subsemigroup of S. It is denoted by $C_{S}\left(a_{1}, \cdots, a_{n}\right)$ or C_{S} and is called the content of a_{1}, \cdots, a_{n} is S. We notice that a_{1}, \cdots, a_{n} need not be distinct. For example, however, $C_{S}(a)$ is different from $C_{S}(a, a)$ in general: $C_{S}(a)$ $=\left\{a^{i} ; i \geqq 1\right\}$ but $C_{S}(a, a)=\left\{a^{i} ; i \geqq 2\right\}$. Let F_{n} be the free semigroup generated by a_{1}, \cdots, a_{n}. Then $C_{F_{n}}\left(a_{1}, \cdots, a_{n}\right)$ is called the free content of a_{1}, \cdots, a_{n}. The author did not use the terminology "content" and " \Re-simplicity" in the preceding papers [2], [3] but he proved there
(1) A free content is $\mathfrak{\beta}$-simple.
(2) A content is \mathfrak{B}-simple.
(3) A semigroup is a semilattice-union of \mathfrak{B}-simple semigroups.
(4) In the greatest semilattice-decomposition (S-decomposition) of a semigroup, each congruence class is \mathfrak{B}-simple.
The author discussed these in the two ways: one way is along the direction, (4) $\rightarrow(3) \rightarrow(1) \rightarrow(2)$ after directly proving (4) [2]. The other way is along the direction, (1) $\rightarrow(2) \rightarrow(4) \rightarrow(3)$ after directly proving (1) [3]. The concept of content is important and interesting but its structure has not been studied so much. In this short note we report a few results on free contents. The detailed proof will be published elsewhere [4].
2. Rank. The positive number n of $C_{F_{n}}\left(a_{1}, \cdots, a_{n}\right)$ is called the rank of a free content $C_{F_{n}}$. For simplicity the free content of rank n is denoted by \mathscr{F}_{n}.

$$
\mathscr{F}_{n}=C_{F_{n}}\left(a_{1}, \cdots, a_{n}\right)
$$

The letters a_{1}, \cdots, a_{n} are called the generators of \mathscr{F}_{n}, but they are not elements of \mathscr{F}_{n}. We have the following theorem.

