194. On Free Contents

By Takayuki TAMURA

University of California, Davis, California, U.S.A.

(Comm. by Kenjiro SHODA, M.J.A., Nov. 12, 1968)

1. Introduction. An S-indecomposable semigroup is a semigroup which has no semilattice-homomorphic image except a trivial one. We will call an S-indecomposable semigroup \mathscr{B} -simple in the sense that a semigroup S is S-indecomposable if and only if it has no prime ideal, that is, S has no ideal I such that $I \neq S$ and $S \setminus I$ is a subsemigroup of S (cf. [1]).

Let S be a semigroup. Let a_1, \dots, a_n be a finite number of elements of S. All the elements x of S each of which is the product of all of a_1, \dots, a_n (admitting repeated use) form a subsemigroup of S. It is denoted by $C_S(a_1, \dots, a_n)$ or C_S and is called the content of a_1, \dots, a_n is S. We notice that a_1, \dots, a_n need not be distinct. For example, however, $C_S(a)$ is different from $C_S(a, a)$ in general: $C_S(a) = \{a^i; i \ge 1\}$ but $C_S(a, a) = \{a^i; i \ge 2\}$. Let F_n be the free semigroup generated by a_1, \dots, a_n . Then $C_{F_n}(a_1, \dots, a_n)$ is called the free content of a_1, \dots, a_n . The author did not use the terminology "content" and " \mathfrak{P} -simplicity" in the preceding papers [2], [3] but he proved there

- (1) A free content is \mathfrak{P} -simple.
- (2) A content is \mathfrak{P} -simple.
- (3) A semigroup is a semilattice-union of \mathfrak{P} -simple semigroups.

(4) In the greatest semilattice-decomposition (S-decomposition) of a semigroup, each congruence class is \mathfrak{P} -simple.

The author discussed these in the two ways: one way is along the direction, $(4) \rightarrow (3) \rightarrow (1) \rightarrow (2)$ after directly proving (4) [2]. The other way is along the direction, $(1) \rightarrow (2) \rightarrow (4) \rightarrow (3)$ after directly proving (1) [3]. The concept of content is important and interesting but its structure has not been studied so much. In this short note we report a few results on free contents. The detailed proof will be published elsewhere [4].

2. Rank. The positive number n of $C_{F_n}(a_1, \dots, a_n)$ is called the rank of a free content C_{F_n} . For simplicity the free content of rank n is denoted by \mathcal{F}_n .

$$\mathcal{F}_n = C_{F_n}(a_1, \cdots, a_n).$$

The letters a_1, \dots, a_n are called the generators of \mathcal{F}_n , but they are not elements of \mathcal{F}_n . We have the following theorem.