233. A New Characterization of Hausdorff k-Spaces

By Y.-F. LIN and Leonard SONIAT University of South Florida

(Comm. by Kinjirô KUNUGI, M. J. A., Dec. 12, 1968)

Throughout, we shall assume all topological spaces are Hausdorff. A function $f: X \rightarrow Y$ from a space X to a space Y is said to be *weakly-continuous* if and only if $f^{-1}(y)$ is closed in X for each y in Y.

Let $f: X \to Y$ be a function from a space X to a space Y. The following are two properties which a space X may or may not satisfy:

 $P_1(X)$: f is weakly continuous;

 $P_2(X)$: for any filter base ([2], p. 211) $\{F_{\lambda} | \lambda \in \Lambda\}$ of compact sets of X, we have $f(\bigcap_{\lambda \in \Lambda} F_{\lambda}) = \bigcap_{\lambda \in \Lambda} f(F_{\lambda})$.

Theorem 1. If X is any space, then $P_1(X)$ implies $P_2(X)$.

The proof of this theorem is straightforward. To our surprise, we discovered first the following :

Theorem 2. If X is a k-space, then $P_2(X)$ implies $P_1(X)$; and hence $P_1(X)$ and $P_2(X)$ are equivalent.

Proof. See the "necessity" part of the proof for Theorem 3, below.

Trying, in vain, to weaken the hypothesis of Theorem 2, we obtain the following characterization of k-spaces.

Theorem 3. $P_1(X)$ and $P_2(X)$ are equivalent if and only if X is a k-space.

Proof. Necessity. According to a theorem of Cohen [1], (see also [2], p. 248), X is a k-space if and only if it is a quotient space of a locally compact space, say Z. Let $p: Z \to X$ denote the natural projection (=quotient map). Suppose, $P_1(X)$ is false, i.e., there exists an element y in Y such that $f^{-1}(y)$ is not closed in X, then $p^{-1}(f^{-1}(y))$ is not closed in Z. Hence, there exists an element z in $Cl(p^{-1}(f^{-1}(y)))$ such that $f(p(z)) \neq y$. Since Z is locally compact (and Hausdorff), there is a filter base $\{E_{\lambda} \mid \lambda \in \Lambda\}$ of compact neighborhoods E_{λ} of z such that $\bigcap_{\lambda \in \Lambda} E_{\lambda} = \{z\}$. Let $F_{\lambda} = p(E_{\lambda})$ for all $\lambda \in \Lambda$, then $\{F_{\lambda} : \lambda \in \Lambda\}$ is a filter base of compact subsets of X such that $\bigcap_{\lambda \in \Lambda} F_{\lambda} = \{p(z)\}$; but $\bigcap_{\lambda \in \Lambda} f(F_{\lambda})$ contains the element y, which is not in $f(\bigcap_{\lambda \in \Lambda} F_{\lambda}) = f(p(z))$; but $\bigcap_{\lambda \in \Lambda} f(F_{\lambda}) \neq \bigcap_{\lambda \in \Lambda} f(F_{\lambda})$, which contradicts $P_2(X)$. Thus, $P_2(X)$ and $P_1(X)$ are equivalent by the preceding and by Theorem 1.