223. On a Product Theorem in Dimension*

By Yukihiro Kodama
Department of Mathematics, Tokyo University of Education (Comm. by Kinjirô Kunugr, m. J. A., Dec. 12, 1968)

1. Let X be a topological space and G an abelian group. The cohomological dimension $D(X: G)$ of X with respect to G is the largest integer n such that $H^{n}(X, A: G) \neq 0$ for some closed set A of X, where H^{*} is the Čech cohomology group based on the system of all locally finite open coverings. If X is normal and $\operatorname{dim} X<\infty$, then $D(X: Z)$ $=\operatorname{dim} X$ by [2] and [5, II]. Here $\operatorname{dim} X$ is the covering dimension of X and Z is the additive group of integers.

In this paper we shall show a product theorem for cohomological dimension with respect to certain abelian groups. The theorem is given by proving a product theorem for covering dimension and by applying the same method as developed in [3] and [4]. We use the following groups:
$Q=$ the rational field, $\quad Z_{p}=$ the cyclic group of order p,
$R_{p}=$ the subgroup of Q consisting of all rationals whose denominators are coprime with p.
Here p is a prime. Let G be one of the groups Z, Q, R_{p}, and Z_{p}, p a prime. We shall show that the relation
(*) $\quad D(X \times Y: G) \leqq D(X: G)+D(Y: G)$
holds if either (i) X is a paracompact Morita space and Y metrizable, or (ii) X is a Lindelöf Morita space and Y a σ-space. See 2 for definition of Morita spaces and σ-spaces. It is well known that the relation (*) is not true for arbitrary groups. Also, the equality $D(X \times Y: G)$ $=D(X: G)+D(Y: G)$ does not generally hold even if G is Q or Z_{p}, and X and Y are separable metric spaces. Next, let βX be the Stone-Čech compactification of X. If G is finitely generated, then it is known by [5] that $D(\beta X: G)=D(X: G)$. We shall prove that $D(\beta X: G) \geqq D(X: G)$ if X is a paracompact Morita space and G is Q or R_{p}, p a prime. Throughout the paper all spaces are Hausdorff and maps are continuous.
2. Let \mathfrak{m} be a cardinal number $\geqq 1$. A topological space X is called an \mathfrak{m}-Morita space if for a set Ω of power \mathfrak{m} and for any family $\left\{G\left(\alpha_{1}, \cdots, \alpha_{i}\right) \mid \alpha_{1}, \cdots, \alpha_{i} \in \Omega ; i=1,2, \cdots\right\}$ of open sets of X such that $G\left(\alpha_{1}, \cdots, \alpha_{i}\right) \subset G\left(\alpha_{1}, \cdots, \alpha_{i}, \alpha_{i+1}\right)$ for $\alpha_{1}, \cdots, \alpha_{i}, \alpha_{i+1} \in \Omega, i=1,2, \cdots$,

[^0]
[^0]: *) Dedicated to Professor A. Komatsu on his sixtieth birthday.

