10. On Weak Convergence of Transformations in Topological Measure Spaces

By Ryotaro SATO

Department of Mathematics, Josai University, Saitama

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 13, 1969)

1. Introduction. A sequence $\{T_n\}$ of invertible measure-preserving transformations in the unit interval [0, 1] is said to be convergent weakly to the invertible measure-preserving transformation T if $\lim_{n \to \infty} ||f \circ T_n - f \circ T|| = 0$ for every integrable function f, with $|| \cdot ||$ denoting L^1 -norm. It is well-known that (α) and (β) in Theorem 1 below are equivalent.

In this paper we prove that if X is a locally compact metrizable space and μ a σ -finite Radon measure on X, then the equivalence between (α) and (β) also holds (Theorem 1). We see that this generalizes a theorem of Papangelou [2, Theorem 2]. Then it will be natural to ask: does the metrizability of X be dropped in Theorem 1 when X is a compact Hausdorff space? Theorem 3 asserts that the answer is negative.

2. An extension of Papangelou's theorems. Let X be a locally compact Hausdorff space and \mathfrak{B} the σ -field generated by the open subsets of X. The members of \mathfrak{B} will be called the Borel subsets of X. Let μ_1 be a measure on \mathfrak{B} such that

- (i) $\mu_1(K)$ is finite for every compact subset K of X,
- (ii) $\mu_1(V) = \sup\{\mu_1(K) \mid K \text{ is compact and } K \subset V\}$ for every open subset V of X,
- (iii) $\mu_1(A) = \inf\{\mu_1(V) | V \text{ is open and } A \subset V\}$ for every Borel subset A of X.

We denote by μ the outer measure induced by μ_1 and denote by \mathfrak{M} the σ -field of all subsets of X which are μ -measurable. We say μ on \mathfrak{M} a Radon measure on X. A subset E of X which belongs to \mathfrak{M} will be called measurable in X.

We denote by G the group of all invertible μ -measure-preserving transformations in X.

Difinition. The sequence $\{T_n\}$ in G converges to $T \in G$ weakly if $\lim_{n \to \infty} \mu(T_nA + TA) = 0$ for every measurable subset A of X with $\mu(A) < \infty$, or equivalently, if $\lim \|f \circ T_n - f \circ T\| = 0$ for every $f \in L^1$.

Theorem 1. Let X be a locally compact metrizable space and μ a σ -finite Radon measure on X. If T, T_n $(n=1, 2, 3, \dots)$ are in G then