25. Note on Embeddings of Lens Spaces

By Ryosuke NAKAGAWA Tokyo University of Education (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1969)

An embedding or immersion of M^n in \mathbb{R}^{2n-k} is said to have *efficiency k* (here M^n is an *n*-dimensional manifold). In [1] and [2] Mahowald and Milgram gave excellent results on efficiency of projective spaces. Their methods are applicable for lens spaces and by using the results in [3] and [4], we can obtain some results on efficiency of embeddings of lens spaces.

Let p be any odd integer ≥ 3 and q_0, \dots, q_n be integers relatively prime to p. The cyclic group Γ of order p with generator t acts on the sphere $S^{2n+1} \subset C^{n+1}$ as follows;

 $t^{k}(z_{0}, \cdots, z_{n}) = (\theta^{kq_{0}}z_{0}, \cdots, \theta^{kq_{n}}z_{n}),$

where (z_0, \dots, z_n) is a complex (n+1)-tuple representing a point of S^{2n+1} and $\theta = \exp(2\pi i/p)$. The orbit manifold S^{2n+1}/Γ is a lens space $L^n = L^n(p; q_0, \dots, q_n)$.

Let $L^m = L^m(p; q_0, \dots, q_m) \subset L^{n+m+1} = L^{n+m+1}(p; q_0, \dots, q_{n+m+1})$ be the subspace with the last n+1 coordinates 0, while $L^n = L^n(p; q_{m+1}, \dots, q_{n+m+1})$ is the subspace having the first m+1 coordinates 0. A vector bundle $L^{n+m+1} - L^n$ over L^m will be denoted by $L_{n+m+1,m}$.

Let a be an integer such that a=4b+c, $0 \le c \le 3$, then $j(a)=8b+2^c$, and if $d+1=2^a e$ with e odd we set K(d)=j(a)-1.

Proposition 1. Suppose there are differentiable embeddings $f: L^n \subset \mathbb{R}^{\alpha}, g: L^m \subset \mathbb{R}^{\beta}, h: L_{n+m+1,m} \subset \mathbb{R}^{\beta+\sigma}$ so that either (i) $\beta+\sigma > 2(2m+1)$ or (ii) $\beta+\sigma=2(2m+1)$ and $2(n+1) \leq K(2m+1)$, then if the normal bundle η_f of the embedding f has σ trivial sections, there is a topological embedding $L^{n+m+1} \subset \mathbb{R}^{\alpha+\beta+1}$.

This can be proved by the same way in [1].

Proposition 2. There are embeddings $f: L^1 \subset R^6$, $g: L^3 \subset R^{14}$, $h: L^n \subset R^{2(2n+1)}(n \neq 1, 3)$ and η_f , η_g , η_h have 2, 4, K(2n+1) sections respectively.

This is proved by Theorem 2.2 in [1] and (4.1) in [4]. Proposition 3.

(1) If
$$2n \ge m$$
, $L_{n+m+1,m} \subset R^{3m+2n+3+\epsilon}$, $\varepsilon = \frac{1}{2}(1+(-1)^m)$.

(2) If 2n < m, $L_{n+m+1,m} \subset R^{4m+3}$.

(3) If 2n < m and $2(n+1) \leq K(2m+1)$, $L_{n+m+1,m} \subset R^{4m+2}$.

It is shown in [3] that $L_{n+m+1,m} \subseteq R^{3m+2n+3+\epsilon}$ and hence we have (1)