37. On Generalized (A).integrals. I

By Kaoru Yoneda
University of Osaka Prefecture

(Comm. by Kinjirô Kunugi, m. J. A., March 12, 1969)

1. Introduction. To consider conjugate functions E.C. Tichmarsh introduced, in [1], the (Q)-integral. We say that $f(x)$ is (Q)-integrable in $[a, b]$ when there exists $\lim _{n \rightarrow \infty} \int_{a}^{b}[f(x)]_{n} d x$ and it is finite, and the limit is denoted by $(Q) \int_{a}^{b} f(x) d x$. But the (Q)-integral does not possess the additive property of integral. A.N. Kolmogorov showed, in [2], that if (Q)-integrable functions $f_{i}(x)(i=1,2)$ satisfies the condition: n mes $\left(x ;\left|f_{i}(x)\right| \geqq n\right)=o(1)(i=1,2)$, for any $\alpha_{i}(i=1,2), \sum_{i} \alpha_{i} f_{i}(x)$ is also (Q)-integrable and $(Q) \int_{a}^{b} \sum_{i} \alpha_{i} f_{i}(x) d x=\sum_{i} \alpha_{i}(Q) \int_{a}^{b} f_{i}(x) d x$. If a (Q)integrable function $f(x)$ satisfies the above condition, we say that $f(x)$ is (A)-integrable in [$a, b]$, and give a value of the (A)-integral by that of the (Q)-integral. A Lebesgue integrable function is (A)-integrable and both integrals have the same value. But there exists a function which is not (A)-integrable, for example $g(x)=(-1)^{n} / x$ where $1 / n$ $+1<x \leqq 1 / n(n=1,2, \cdots)$ and $g(0)=0$. K. Kunugi has proposed in [3] the notion of the generalized (E.R.)-integral by which this $g(x)$ is integrable in $[0,1]$.

In this paper, we state a generalization of the (A)-integral.
2. The generalization of (A)-integral. In this paper, consider only real valued functions which are measurable and almost everywhere finite in $[0,1]$ and denote the set of these functions by $\mathbb{M}[0,1]$. Let $\mathfrak{K} \equiv\left\{h_{n}(x)\right\}_{n=1,2} \ldots$.. be a sequence of non-negative Lebesgue integrable functions tending to infinite almost everywhere in [0, 1].

Definition of the (A, $\mathfrak{s})$-integral. We say that $f(x)$ of $\mathfrak{M}[0,1]$ is (A, $\mathfrak{S})$-integrable in $[0,1]$ if $f(x)$ satisfies following $[a]$ and $[b]$:
[a] $\int_{\left(x ;|f(x)| \geq \alpha h_{n}(x)\right)} h_{n}(x) d x=o(1)$ for any $\alpha>0$,
[b] $\quad \lim _{n \rightarrow \infty} \int_{0}^{1}[f(x)]_{h_{n}} d x$ exists and is finite, where $[f(x)]_{h_{n}}=f(x)$ for $|f(x)|<h_{n}(x)$ and $=0$ for $|f(x)| \geqq h_{n}(x)$.

The value of the integral is given by this limit and we denote it $b y(\mathbf{A}, \mathfrak{S}) \int_{0}^{1} f(x) d x$.

Especially put $h_{n}(x)=n u(x)$, where $u(x)$ is positive and Lebesgue

