35. The Product of M-Spaces need not be an M-Space

By Takesi Isiwata
(Comm. by Kinjirô Kunugi, m. J. A., March 12, 1969)

The notion of M-spaces has been introduced by K. Morita [1] and from that time on many interesting properties of M-spaces have been obtained by Morita and others. But a still unsolved problem is whether the cartesian product of M-spaces must be an M-space. The purpose of this note is to answer this question negatively.

We assume that all spaces are completely regular T_{1}-spaces and denote by βX and $v X$ the Stone-Čech compactification and the Hewitt realcompactification of X respectively [2]. If X is not pseudocompact, then it is well known that $\beta X-v X \neq \varnothing$. A space X is said to be an M-space if there exists a normal sequence $\left\{\mathfrak{H}_{n} ; n=1,2, \ldots\right\}$ of open coverings of X satisfying the condition (M) below:

If $\left\{K_{n}\right\}$ is a sequence of non-empty subsets of X such that
(M) $K_{n+1} \subset K_{n}, K_{n} \subset \operatorname{St}\left(x_{0}, \mathfrak{U}_{n}\right)$ for each n and for some fixed point x_{0} of X, then $\cap \bar{K}_{n} \neq \varnothing$.
Theorem 1. Suppose that X is not pseudocompact and P and Q are disjoint non-empty subsets of $\beta X-X$. If $X \cup P$ and $X \cup Q$ are countably compact, then $A \times B$ is not an M-space where $A=X \cup P \cup\left\{x^{*}\right\}$, $B=X \cup Q \cup\left\{x^{*}\right\}$ and x^{*} is an arbitrary point contained in $\beta X-\cup X$.

Proof. Since A and B are countably compact these spaces are M-spaces. x^{*} belongings to $\beta X-u X$, there exists a continuous function f on βX such that $f>0$ on X and $f\left(x^{*}\right)=0$. It is obvious that
$\cup\left(X \cap Z_{n}\right)=X \quad$ where $\quad Z_{n}=\{x ; f(x) \geqq 1 / n, x \in \beta X\}$.
Now suppose that $A \times B$ is an M-space. Then there exists a normal sequence $\left\{\mathscr{H}_{n} ; n=1,2, \cdots\right\}$ of open coverings of $A \times B$ satisfying the condition (M). Let us put $s^{*}=\left(x^{*}, x^{*}\right)$. Since $\operatorname{St}\left(s^{*}, \mathscr{U}_{n}\right)$ is an open set of $A \times B(\subset \beta X \times \beta X)$, there is an open set U_{n} (in βX) containing x^{*} such that

$$
\begin{array}{ll}
& U_{n} \cap Z_{n}=\varnothing, \quad \operatorname{cl}_{\beta X} U_{n+1} \subset U_{n} \\
\text { and } & (A \times B) \cap\left(U_{n} \times U_{n}\right) \subset \operatorname{St}\left(s^{*}, \mathfrak{A}_{n}\right) .
\end{array}
$$

As is well known every point of $\beta X-X$ is not G_{δ} in βX and hence $\cap U_{n}$ contains a point $y^{*}\left(\neq x^{*}\right)$ of $\beta X-X$ (notice that $\cup Z_{n} \supset X$ and $U_{n} \cap Z_{n}=\varnothing$). $\quad x^{*} \neq y^{*}$ leads to the existence of an open set V of βX containing y^{*} whose closure does not contain x^{*}. We denote by $\Delta(X)$ the diagonal set of $X \times X$ and by K_{n} the following set

$$
(V \times V) \cap\left(U_{n} \times U_{n}\right) \cap \Delta(X)
$$

