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1. Introduction. 1.0. Our purpose is to construct the limit
spaces (i.e. generalized topological spaces [2] p. 273) J, J and Jse,
defined on the set J shown in 1.2 which characterize the generalized
double weak limits (itself or with the restriction on sign) expressed by
filter. These spaces J, J,, Jsep and another space J also show the
difference among the conditions which characterize the (topological)
limit space.

1,1o Let E be a set. Let vx (by v) be the set o filters defined
on the set E corresponding to x e E. We show here the following
properties of vx (L1).-(L4) [2] p. 273, [3] pp. 451-452.

(L) vxoranyxeEis a / ideal. Here / ideal is the set of
filters satisfying the ollowing conditions (i) (ii);

) 1 .=-- (F [J G F e (), G e (2)) e rx or any 1, 2 e ’X,

(ii) all filters finer than e rx (i.e. ()(1)holds) are also the
elements of vx. Here (), ()and ()are the sets consisting of the
elements of , , and respectively.

Hereafter let [x] denote the filter with the base (x}, and let [(x)]
denote the weakest filter in vx (if it exists).
(L) z’x for any x e E contains [x].
(L) rx or any x e E contains [(x)].
(L) Corresponding to a V e [(x)] there exists an element W(V) of
[(x)] such that V e [(y)] holds or all y e W.

If v satisfies (L) (L2), (E, v) is called a limit space [2] p. 273. If
v satisfies (L1)N(L3), (E, v) is called a principal ideal limit space. If v
satisfies (L)--(L4), (E, v) is called a topological space. Limit space is
L space by M. Frechet described by the filter. The following (T1) (T)
are the axioms o separation in limit space. (T)[x] vy holds or any
two distinct elements x, y in E. (T)vxvy--. holds for any two
distinct elements x, y in E.

Let (E, v) be a limit space. If e vx, we call that tends to x e E
by v, and that x is the limit from by v. If [{x;i>n};xeE]
becomes the base of a filter e vx, we say that {x} tends to x by v.
Let A be a set in E. fi (the closure o A) consists of the points x e E
such that there exists a filter e vx satisfying F A 4:0 for any F e ().


