53. On Ranked Spaces and Linearity. II

By Masako WASHIHARA Kyoto Industrial University

(Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1969)

In this note we shall give a definition of linear ranked spaces, axioms of which are weaker than those given in [2]. Sometimes this definition is more convenient to use, in particular, to study for the notions connected with fundamental sequences of neighbourhoods. Hereafter we shall treat only ranked spaces with indicator $\omega_0[1]$. Throughout this note, x, y, \cdots will denote points of a ranked space, $\mathfrak{B}_n(x)$ the system of neighbourhoods of x with rank n, $\{u_n(x)\}, \{v_n(x)\},$ \cdots fundamental sequences of neighbourhoods with respect to x.

§1. Definition of linear ranked spaces. Let E be a ranked space, and also a linear space over real or complex field. We call E a linear ranked space, if linear operations in E are continuous in the following sense:

- (I) For any $\{u_n(x)\}$ and $\{v_n(y)\}$, there is a $\{w_n(x+y)\}$ such that $u_n(x) + v_n(y) \subseteq w_n(x+y)$.
- (II) For any $\{u_n(x)\}$ and $\{\lambda_n\}$ with $\lim \lambda_n = \lambda$, there is a $\{v_n(\lambda x)\}$ such that $\lambda_n u_n(x) \subseteq v_n(\lambda x)$.

(I) implies the continuity of addition ; if $\{\lim x_n\} \ni x$ and $\{\lim y_n\} \ni y$, then $\{\lim (x_n + y_n)\} \ni x + y$, and (II), the continuity of scalar multiplication ; if $\{\lim x_n\} \ni x$ and $\lim \lambda_n = \lambda$, then $\{\lim \lambda_n x_n\} \ni \lambda x$.

§2. The neighbourhoods of zero. Let E be a linear ranked space. We will denote the system of neighbourhoods of 0 with rank n by \mathfrak{V}_n , and fundamental sequences with respect to 0 by $\{U_n\}, \{V_n\}, \cdots$. Obviously $\{\mathfrak{V}_n\}$ satisfies the axioms (A), (B), (a), (b) in [2].

Furthermore, from (I), (II), we get following properties.

- (RL₁) For any $\{U_n\}$ and $\{V_n\}$, there is a $\{W_n\}$ such that $U_n + V_n \subseteq W_n$.
- (RL₂) (i) For any $\{U_n\}$ and λ , there is a $\{V_n\}$ such that $\lambda U_n \subseteq V_n$.
 - (ii) For any x and $\{\lambda_n\}$ with $\lim \lambda_n = 0$, there is a $\{V_n\}$ such that $\lambda_n x \in V_n$.
 - (iii) For any $\{U_n\}$ and $\{\lambda_n\}$ with $\lim \lambda_n = 0$, there is a $\{V_n\}$ such that $\lambda_n U_n \subseteq V_n$.
- (RL₃) Let x be any point in E. For any $\{U_n\}$ there is a $\{v_n(x)\}$ such that $x + U_n \subseteq v_n(x)$, and, conversely, for any $\{u_n(x)\}$ there is a $\{V_n\}$ such that $u_n(x) \subseteq x + V_n$.