51. On Some Homogeneous Boundary Value Problems Bounded Below

By Daisuke Fujiwara
Department of Mathematics, University of Tokyo
(Comm. by Zyoiti Suetuna, m. J. A., April 12, 1969)

§ 1. Introduction. Let Ω be a compact oriented Riemannian n-space with smooth boundary Γ. Let A be a linear partial differential operator on Ω of order $2 m$. We assume A is strongly elliptic, that is, there is a constant $C>0$ such that, for any x in Ω and for any non zero vector ξ cotangent to Ω at x, we have

$$
C^{-1}|\xi|^{2 m} \leq \operatorname{Re} \sigma_{2 m}(A)(x, \xi) \leq C|\xi|^{2 m},
$$

where $\sigma_{2 m}(A)$ is the principal symbol of A. We consider normal systems $\left\{B_{r}\right\}_{r \in R}, R=\left(r_{1}, r_{2}, \cdots, r_{m}\right)$, of m boundary operators $B_{r_{j}} . \quad r_{j}$ is the order of $B_{r_{j}}$. We assume $r_{j}<2 m$ for any $j=0,1, \cdots, m$. The problem to be considered is

Problem 1. Characterize those couples $\left\{A,\left\{B_{r}\right\}_{r \in R}\right\}$ which give, with some constants $1 / 2 \geq \varepsilon \geq 0, C, \beta>0$, the estimate

$$
\begin{equation*}
\operatorname{Re}((A+\beta) u, u)_{L^{2}(\Omega)} \geq C\|u\|_{H^{m-s}(\Omega)}^{2} \tag{1}
\end{equation*}
$$

for all u in $H_{B}^{2 m}(\Omega)=\left\{u \in H^{2 m}(\Omega) ;\left.B_{r} u\right|_{\Gamma}=0\right.$, for any $\left.r \in R\right\}$.
Here $H^{s}(\Omega)$ denotes the Sobolev space on Ω of order $s,\| \|_{H^{s}(\Omega)}$ is its norm and (, $)_{L^{2}(\Omega)}$ is the inner product in $L^{2}(\Omega)$.

If $1 / 2>\varepsilon \geq 0$, the problem was treated in far stronger form in [3]. In this note we concern with the case $\varepsilon=1 / 2$. So the problem is

Problem 1'. Characterize those couples $\left\{A,\left\{B_{r}\right\}_{r \in R}\right\}$ which give, with some constants $C, \beta>0$, the estimate

$$
\begin{equation*}
\operatorname{Re}((A+\beta) u, u)_{L^{2}(\Omega)} \geq C\|u\|_{H^{m-1 / 2}(\Omega)}^{2} \tag{2}
\end{equation*}
$$

for all u in $H_{B}^{2 m}(\Omega)$.
We assume the following hypothesis (H) that was proved in the case $0 \leq \varepsilon<1 / 2$ necessary for the estimate (1) to hold. (See [3] and [6].) (H) The set R coincides with one of the R_{j} 's defined by $R_{j}=(0,1, \ldots$ $\cdots, m-j-1, m, m+1, \cdots, m+j-1), 1 \leq j \leq m$. Under this hypothesis we give a necessary and sufficient condition for the estimate (2) to hold.

Proofs are omitted. Detailed discussions will be published elsewhere.*)
§2. Results. We denote by ν the interior unit normal to Γ and

[^0]
[^0]: *) This work was done during the author's stay in Paris. He expresses his hearty thanks to Professor J. L. Lions for his constant encouragement.

