51. On Some Homogeneous Boundary Value Problems Bounded Below

By Daisuke FUJIWARA Department of Mathematics, University of Tokyo (Comm. by Zyoiti SUETUNA, M. J. A., April 12, 1969)

§1. Introduction. Let Ω be a compact oriented Riemannian *n*-space with smooth boundary Γ . Let A be a linear partial differential operator on Ω of order 2m. We assume A is strongly elliptic, that is, there is a constant C>0 such that, for any x in Ω and for any non zero vector ξ cotangent to Ω at x, we have

 $C^{-1}|\xi|^{2m} \leq \operatorname{Re} \sigma_{2m}(A)(x,\xi) \leq C|\xi|^{2m},$

where $\sigma_{2m}(A)$ is the principal symbol of A. We consider normal systems $\{B_r\}_{r \in R}$, $R = (r_1, r_2, \dots, r_m)$, of m boundary operators B_{r_j} . r_j is the order of B_{r_j} . We assume $r_j < 2m$ for any $j = 0, 1, \dots, m$. The problem to be considered is

Problem 1. Characterize those couples $\{A, \{B_r\}_{r \in R}\}$ which give, with some constants $1/2 \ge \varepsilon \ge 0$, $C, \beta > 0$, the estimate

(1) $\operatorname{Re}((A+\beta)u, u)_{L^{2}(g)} \geq C \|u\|_{H^{m-\varepsilon}(g)}^{2}$

for all u in $H_B^{2m}(\Omega) = \{ u \in H^{2m}(\Omega) ; B_r u |_{\Gamma} = 0, \text{ for any } r \in R \}.$

Here $H^{s}(\Omega)$ denotes the Sobolev space on Ω of order s, $\| \|_{H^{s}(\Omega)}$ is its norm and $(,)_{L^{2}(\Omega)}$ is the inner product in $L^{2}(\Omega)$.

If $1/2 > \varepsilon \ge 0$, the problem was treated in far stronger form in [3]. In this note we concern with the case $\varepsilon = 1/2$. So the problem is

Problem 1'. Characterize those couples $\{A, \{B_r\}_{r \in R}\}$ which give, with some constants $C, \beta > 0$, the estimate

(2) $\operatorname{Re}((A+\beta)u, u)_{L^{2}(g)} \geq C \|u\|_{H^{m-1/2}(g)}^{2}$

for all u in $H^{2m}_B(\Omega)$.

We assume the following hypothesis (H) that was proved in the case $0 \le \varepsilon \le 1/2$ necessary for the estimate (1) to hold. (See [3] and [6].) (H) The set R coincides with one of the R_j 's defined by $R_j = (0, 1, \dots, \dots, m-j-1, m, m+1, \dots, m+j-1), 1 \le j \le m$. Under this hypothesis we give a necessary and sufficient condition for the estimate (2) to hold.

Proofs are omitted. Detailed discussions will be published elsewhere.^{*)}

§2. Results. We denote by ν the interior unit normal to Γ and

^{*)} This work was done during the author's stay in Paris. He expresses his hearty thanks to Professor J. L. Lions for his constant encouragement.