# 50. Some Properties of Regular Distribution Semi-groups*) 

By Teruo Ushijima<br>Department of Pure and Applied Sciences, Faculty of General Education, University of Tokyo (Comm. by Zyoiti Suetuna, m. J. A., April 12, 1969)

The notion of distribution semi-groups was defined by J. L. Lions in [4]. D. Fujiwara characterized the infinitesimal generator of an exponential distribution semi-group in terms of an equi-continuous semi-group in some Fréchet space in [3]. In this paper we shall report that Fujiwara's results can be partially extended to the infinitesimal generator of a regular distribution semi-group if we introduce the notion of a locally equi-continuous semi-group, which was recently studied by T. Kōmura in [3]. In order to characterize the infinitesimal generator of a locally equi-continuous semi-group in a locally convex space, she used the concept of the generalized Laplace transform of a distribution. This concept is also essential to the present work. Complete proofs of the theorems in the present note will be published elsewhere.
§ 1. Statements of the results. Let $L(E, F)$ be the totality of continuous linear mappings from $E$ to $F$, where $E$ and $F$ are topological vector spaces. The set $L(E, E)$ is denoted by $L(E)$. Let us abbreviate Schwartz space $\mathscr{D}\left(R^{1}\right)$ by $\mathscr{D}$. Let $X$ be a Banach space. Consider the totality of $X$-valued distributions, $\mathscr{D}^{\prime}(X)=L(\mathscr{D}, X)$. Let $\mathscr{D}_{+}$(or $\mathscr{D}_{+}^{\prime}(X)$ ) be the totality of elements of $\mathscr{D}\left(\right.$ or $\left.\mathscr{D}^{\prime}(X)\right)$ whose supports are contained in $[0, \infty$ ). For any linear operator $T$, we denote its domain (or range, or null space) by $D(T)$ (or $R(T)$, or $N(T)$ ).

Following Lions, we say that an $L(X)$-valued distribution $\mathscr{I}$ is a regular distribution semi-group (D.S.G., in short) if $\mathscr{I}$ satisfies the following five conditions.
(T.1) $\mathscr{I} \in \mathscr{D}_{+}^{\prime}(L(X))$.
(Т.2) $\mathscr{I}(\phi * \psi)=\mathscr{I}(\phi) \mathscr{I}(\psi)$ if $\phi, \psi \in \mathscr{D}_{+}$.
(T.3) $\bigcap_{\phi \in \mathscr{G}_{+}} N(\mathscr{I}(\phi))=\{0\}$.
(T.4) The linear hull $\mathbb{R}$ of $\underset{\phi \in \mathscr{D}_{+}}{\bigcup} R(\mathcal{I}(\phi))$ is dense in $X$.
(T.5) For any $x \in \mathcal{R}$, there exists an $X$-valued function $x(t)$ such that: (i) $x(t)=0$ for $t<0$, (ii) $x(0)=x$, (iii) $x(t)$ is continuous for $t \geqq 0$, (iv) $\mathscr{I}(\phi) x=\int_{0}^{\infty} \phi(t) x(t) d t$ for any $\phi \in \mathscr{D}$.

[^0]
[^0]:    *) This research was partly supported by the Sakkokai Foundation

