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1. Introduction and results. In the present note, we will extend
our results stated before ([3]).

Let D be a domain with a bounded boundary / of R. Here we
consider a strongly hyperbolic equation

( 1 ) Lu=
Or,., +al(x, D) 3t2+... + a,(x, D) u

/ (lower order terms)u f,

a(x, D)- a(x)D

and let all o the roots v(x, )(i=1, 2,..., 2m) with respect to v of
the equation r"+a,(x, $)r’-+... +a(x, )--0 be pure imaginary
and distinct mutually, not zero uniformly for x e 9, I[-1.

Here we assume that, after applying any coordinate transforma-
+ = R 0}, =0}) such that on thetion (Ut2, I2) (R+ {y e lye>

boundary the conormal direction of a given uniformly strongly elliptic
operator a(x, D) of order 2 is changed into the normal direction, the

coefficients of the principal part of (1) containing odd power of

are zero on the boundary y 0.
Then we obtain the following
Theorem. For any f(t, x)e C1([0, T], L=(t2)) and for any initial

conditions (u(O, x), u "-lu )(O, x), ...,
at2_

(O, x) e D(a) D(a1/2),

there exists a unique solution u of (1), satisfying boundary conditions

such ha (u(, x), 3u 3u C-- (t, x), ...,
3t

(t, x) e ([0, T], D(a) D(a-1/2)

+ p(x) ur =0 Furthermore

p(x) e C(F).
To prove the theorem above mentioned, we need to extend our

singular integral operators defined on R to ones defined over/2 ([11]).


