74. Boundedness of Solutions to Nonlinear Equations in Hilbert Space

By Athanassios G. KARTSATOS¹⁾ Department of Mathematics, University of Athens, Greece

(Comm. by Zyoiti SUETUNA, M. J. A., May 12, 1969)

In what follows, by $H=(H, \langle, \rangle)$ we denote a complex Hilbert space, and by B=B(H, H), the space of all bounded linear operators from H into H, associated with the strong operator topology. The only topology that we consider on H is the strong one.

Our aim in this paper is to give a boundedness theorem for the solutions of the differential equation

(*) $\dot{x} = A(t)x + f(t, x),$ where $x: I \to H, I = [t_0, +\infty), t_0 \ge 0$, is a differentiable function on Iwith continuous first derivative,²⁾ $A: I \to B$ is a continuous function on I, and $f: I \times H \to H$ is also continuous on $I \times H$.

Theorem 1. Consider (*) under the following assumptions:
(i) there exists an operator valued function Q: I→B continuous and such that:

(i₁)
$$\dot{Q}(t) + Q(t)A(t) + A^{*}(t)Q(t) = 0,^{3}$$
 $t \in I$, and

 $|\langle Q(t)x, x\rangle| \ge g(||x||), \qquad (t, x) \in I \times H,$

where $g: \mathbf{R}_+ \to \mathbf{R}_+ = [0, +\infty)$ is continuous and $\limsup_{y \to +\infty} g(y) = +\infty$; (ii) $||x|| \cdot ||f(t, x)|| \le p(t)g(||x||)$, with $p: I \to \mathbf{R}_+$ continuous and such that

$$\int_{t_0}^{\infty} p(t) \|Q(t)\| dt < +\infty;$$

then, if x(t), $t \in I$, is a solution of (*), it is bounded, i.e. there exists a constant k>0 such that $||x(t)|| \le k$ for every $t \in I$.

(1)
$$V(t) = \langle Q(t)x(t), x(t) \rangle,$$

we have

$$V(t) = \langle \dot{Q}(t)x(t) + Q(t)\dot{x}(t), x(t) \rangle + \langle Q(t)x(t), \dot{x}(t) \rangle \\ = \langle \dot{Q}(t)x(t) + Q(t)A(t)x(t) + Q(t)f(t, x(t)), x(x) \rangle \\ + \langle Q(t)x(t), A(t)x(t) + f(t, x(t)) \rangle \\ = \langle (\dot{Q}(t) + Q(t)A(t) + A^{*}(t)Q(t))x(t), x(t) \rangle \\ + \langle Q(t)f(t, x(t)), x(t)) \rangle + \langle Q(t)x(t), f(t, x(t)) \rangle$$

and by integration from t_0 to $t (t_0 \leq t)$, we have

¹⁾ This research was supported in part by a NATO grant.

²⁾ The existence of solutions on I is assumed without further mention.

³⁾ $A^{*}(t)$ is the adjoint of the operator A(t).