104. Convergence of Transport Process to Diffusion

By Toitsu WATANABE

Department of Applied Physics, Nagoya University

(Comm. by Kinjirô KUNUGI, M. J. A., June 10, 1969)

Let us consider a transported particle in the transport medium G, which is bounded or unbounded domain of \mathbb{R}^n . Suppose that it travels in a straight line and interacts with the medium with probability $k\varDelta$ $+o(\varDelta)$ during time t and $t+\varDelta$. The scattering distribution of velocity from $c\omega$ to $c\omega'$, $\omega' \in d\omega'$ at point $x \in G$ is assumed given by $\pi_x(d\omega')$. If the particle hits the boundary of G, then it dies. Under these assumptions, the position X(t) and velocity V(t) of the particle at time t together make up a Markov process (X(t), V(t)).

The purpose of this paper is to show that when $c \rightarrow \infty$, the process X(t) converges to a diffusion under some additional assumptions (Assumptions I, II, and III).

The same result has been obtained in case of one-dimensional transport process by N. Ikeda, H. Nomoto [1] and M. Pinsky [3]; in case of two-dimensional isotropic one by A. S. Monin [2] and T. Watanabe [6]; in case of multi-dimensional isotropic one by S. Watanabe and T. Watanabe [5].

1. Let G be bounded or unbounded domain of *n*-dimensional Euclidian space \mathbb{R}^n . Suppose that the boundary ∂G of G is smooth, if it exists. Let Ω be a bounded set in \mathbb{R}^n . Let denote by S the product space of \mathbb{R}^n and Ω , and by $C_0(S)$ the Banach space of bounded continuous function on S vanishing at infinity and at boundary point (x, ω) such that $(\mathbf{n}_x, \omega) \leq 0$, where \mathbf{n}_x is an inner normal vector at $x \in \partial G$. Let T_t^c , $t \geq 0$, be the strongly continuous positive contraction semigroup on $C_0(S)$ with infinitesimal generator A^c given by:

$$A^{c}f(x,\omega) = c(\omega, \operatorname{grad} f) + k \int_{\Omega} [f(x,\upsilon) - f(x,\omega)] d\pi_{x}(\upsilon),$$

where $(\omega, \operatorname{grad} f) = \sum_{i=1}^{n} \omega_i \frac{\partial}{\partial x_i} f$, $\omega = (\omega_1, \dots, \omega_n)$, and $\pi_x (x \in \mathbb{R}^n)$ is a probability measure on Ω . We call this semigroup T_t^c , $t \ge 0$, the transport process with speed c.

Now let $C_0(G)$ be the Banach space of bounded continuous function on G vanishing near the boundary ∂G and at infinity, and $C^s_{\mathcal{K}}(G)$ be the subspace of $C_0(G)$ of function with compact support, whose thrice derivatives belong to $C_0(G)$. Let $T^p_t, t \ge 0$, be the strongly continuous positive contraction semigroup on $C_0(G)$ of diffusion determined by: