99. Propagation of Chaos for Certain Markov Processes of Jump Type with Nonlinear Generators. I

By Hiroshi TANAKA

University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., June 10, 1969)

1. Introduction. Let Q be a set endowed with a σ -field \mathcal{F} of its subsets such that each single point set $\{x\}$ is in \mathcal{F} , and denote by \mathcal{P} the set of probability measures on (Q, \mathcal{F}) . Suppose we are given a kernel $A_f(x, \Gamma)$ indexed by $f \in \mathcal{P}$ with the form:

$$A_f(x, \Gamma) = \sum_{n=1}^{\infty} \int \cdots \int A_n^{(x_1, \cdots, x_n)}(x, \Gamma) f(dx_1) \cdots f(dx_n), \quad \Gamma \in \mathcal{F},$$

and assume that the following 3 conditions are satisfied.

(i) For each $n \ge 1$, $x, x_1, \dots, x_n \in Q$, $A_n^{(x_1,\dots,x_n)}(x, \cdot)$ is a bounded signed measure on (Q, \mathcal{F}) which is nonnegative outside $\{x\}$ and has zero total mass.

(ii) For each $n \ge 1$, $\Gamma \in \mathcal{F}$, $A_n^{(x_1,\dots,x_n)}(x,\Gamma)$ is a measurable function of (x, x_1, \dots, x_n) , symmetric in (x_1, \dots, x_n) when x is fixed, and $A_n^{(x_1,\dots,x_n)}(x, \{x\})$ is measurable in (x, x_1, \dots, x_n) .

(iii)
$$q = \sum_{n=1}^{\infty} q_n < \infty$$
, where $q_n = \sup_{x, x_1, \dots, x_n \in Q} A_n^{(x_1, \dots, x_n)}(x, Q - \{x\})$.

We are concerned with the following nonlinear equation:

(1.1)
$$\frac{du(t)}{dt} = Au(t), \qquad u(0+) = f,$$

where the initial value f and the solution u, for each t>0, are in \mathcal{P} , and $(Au)(\cdot) = \int_{Q} A_u(x, \cdot)u(dx)$.

Denote by Q^n (\mathcal{F}^n) the *n*-fold product space $Q \times \cdots \times Q$ (σ -field $\mathcal{F} \times \cdots \times \mathcal{F}$) of Q (\mathcal{F}), and let A_n be a linear operator from the space \mathfrak{M}_n of bounded signed measures on (Q^n, \mathcal{F}^n) into itself defined by

$$(A_n u)(\Gamma) = \int_{Q^n} u(dx_1 \cdots dx_n) \sum_{N=1}^{n-1} n^{-N} \sum_{i, i_1, \cdots, i_N} \int_Q A_N^{(x_{i_1}, \cdots, x_{i_N})}(x_i, \Gamma),$$

where $\sum_{i,i_1,\dots,i_N}^{(n)}$ is the sum with respect to all (i, i_1, \dots, i_N) such that i, i_1, \dots, i_N are all different and $1 \le i, i_1, \dots, i_N \le n$; χ_{Γ} is the indicator function of $\Gamma \in \mathcal{F}^n$, and the notation $A_N^{(x_{i_1},\dots,x_{i_N})}(x_i,\varphi)$ for $\varphi = \varphi(x_1, \dots, \dots, x_n)$ stands for

$$\int_Q A_N^{(x_{i_1},\cdots,x_{i_N})}(x_i,\,dx)\varphi(\cdots,\,x_{i-1},\,x,\,x_{i+1},\,\cdots).$$

Consider the linear equation for $n=2, 3, \cdots$: