97. A Remark on the Π -imbedding of Homotopy Spheres

By Fumiko BANDō and Kiyoshi KATASE

(Comm. by Kenjiro SHODA, M. J. A., June 10, 1969)

Let Θ_n be the group of homotopy *n*-spheres and \tilde{S}^n be an element of Θ_n . \tilde{S}^n represents an element of a subgroup $\Theta_n(\partial \pi)$ of Θ_n if and only if \tilde{S}^n is the boundary of a parallelizable manifold.

It is known that every \tilde{S}^{13} is imbeddable in the 17-dimensional unit sphere S^{17} with a trivial normal bundle (Katase [3]). (Such an imbedding is called a π -imbedding.) But in the case of codimension 3, it has been unknown whether the π -imbedding exists or not. The result of this paper is that there exists a 13-dimensional homotopy sphere \tilde{S}^{13} which is not π -imbeddable in S^{16} .

1. Suppose that \tilde{S}^n is π -imbedded in S^{n+k} $(3 \leq k < n)$. Then the tubular neighbourhood of \tilde{S}^n in S^{n+k} and its boundary is easily seen to be diffeomorphic to $S^n \times D^k$ and $S^n \times S^{k-1}$ respectively (here D^k is the closed unit disk in euclidean k-space and is bounded by S^{k-1}). Moreover, \tilde{S}^n is isotopic to an \tilde{S}^n_1 which lies in $S^n \times S^{k-1} \subset S^{n+k}$ with normal (k-1)-frame \mathcal{F} in $S^n \times S^{k-1}$ and is homotopic, in $S^n \times S^{k-1}$, to $S^n \times x_0$ for some $x_0 \in S^{k-1}$ (Levine [6]). The Pontrjagin-Thom construction with respect to a normal (k-1)-frame \mathcal{F} on \tilde{S}^n_1 in $S^n \times S^{k-1}$ yields a map

$$\varphi; S^n \times S^{k-1} \longrightarrow S^{k-1}$$

which maps \tilde{S}_1^n to a point p in S^{k-1} (see, for example, Kervaire [4]).

Suppose that φ can be extended to a map

$$\Phi'; S^{n+k} - \operatorname{Int} S^n \times D^k \longrightarrow S^{k-1}.$$

Then we can approximate it by a smooth map Φ keeping φ fixed.

Since we may consider p as a regular value of Φ , $\Phi^{-1}(p)$ or at least the component of \tilde{S}_1^n in $\Phi^{-1}(p)$ is an (n+1)-dimensional submanifold of S^{n+k} with a trivial normal bundle and its boundary is \tilde{S}_1^n . Therefore \tilde{S}^n bounds a parallelizable manifold, i.e., \tilde{S}^n is an element of $\Theta_n(\partial \pi)$.

2. Now we consider the obstructions to extending φ over $S^{n+k} - \operatorname{Int}(S^n \times D^k)$ which lie in the cohomology groups

$$H^{r}(S^{n+k} - \operatorname{Int}(S^{n} \times D^{k}), S^{n} \times S^{k-1}; \pi_{r-1}(S^{k-1})).$$