97. A Remark on the ח-imbedding of Homotopy Spheres

By Fumiko Bandō and Kiyoshi Katase

(Comm. by Kenjiro Shoda, M. J. A., June 10, 1969)

Let Θ_{n} be the group of homotopy n-spheres and \tilde{S}^{n} be an element of Θ_{n}. \tilde{S}^{n} represents an element of a subgroup $\Theta_{n}(\partial \pi)$ of Θ_{n} if and only if \tilde{S}^{n} is the boundary of a parallelizable manifold.

It is known that every \tilde{S}^{13} is imbeddable in the 17-dimensional unit sphere S^{17} with a trivial normal bundle (Katase [3]). (Such an imbedding is called a π-imbedding.) But in the case of codimension 3 , it has been unknown whether the π-imbedding exists or not. The result of this paper is that there exists a 13-dimensional homotopy sphere \tilde{S}^{13} which is not π-imbeddable in S^{16}.

1. Suppose that \tilde{S}^{n} is π-imbedded in $S^{n+k}(3 \leqq k<n)$. Then the tubular neighbourhood of \tilde{S}^{n} in S^{n+k} and its boundary is easily seen to be diffeomorphic to $S^{n} \times D^{k}$ and $S^{n} \times S^{k-1}$ respectively (here D^{k} is the closed unit disk in euclidean k-space and is bounded by S^{k-1}). Moreover, \tilde{S}^{n} is isotopic to an \tilde{S}_{1}^{n} which lies in $S^{n} \times S^{k-1} \subset S^{n+k}$ with normal ($k-1$)-frame \mathscr{F} in $S^{n} \times S^{k-1}$ and is homotopic, in $S^{n} \times S^{k-1}$, to $S^{n} \times x_{0}$ for some $x_{0} \in S^{k-1}$ (Levine [6]). The Pontrjagin-Thom construction with respect to a normal ($k-1$)-frame \mathcal{F} on \tilde{S}_{1}^{n} in $S^{n} \times S^{k-1}$ yields a map

$$
\varphi ; S^{n} \times S^{k-1} \longrightarrow S^{k-1}
$$

which maps \tilde{S}_{1}^{n} to a point p in S^{k-1} (see, for example, Kervaire [4]).
Suppose that φ can be extended to a map

$$
\Phi^{\prime} ; S^{n+k}-\operatorname{Int} S^{n} \times D^{k} \longrightarrow S^{k-1}
$$

Then we can approximate it by a smooth $\operatorname{map} \Phi$ keeping φ fixed.
Since we may consider p as a regular value of $\Phi, \Phi^{-1}(p)$ or at least the component of \tilde{S}_{1}^{n} in $\Phi^{-1}(p)$ is an $(n+1)$-dimensional submanifold of S^{n+k} with a trivial normal bundle and its boundary is \tilde{S}_{1}^{n}. Therefore \tilde{S}^{n} bounds a parallelizable manifold, i.e., \tilde{S}^{n} is an element of $\Theta_{n}(\partial \pi)$.
2. Now we consider the obstructions to extending φ over $S^{n+k}-\operatorname{Int}\left(S^{n} \times D^{k}\right)$ which lie in the cohomology groups

$$
H^{r}\left(S^{n+k}-\operatorname{Int}\left(S^{n} \times D^{k}\right), S^{n} \times S^{k-1} ; \pi_{r-1}\left(S^{k-1}\right)\right)
$$

