134. Propagation of Chaos for Certain Markov Processes of Jump Type with Nonlinear Generators. II

By Hiroshi TANAKA

University of Tokyo

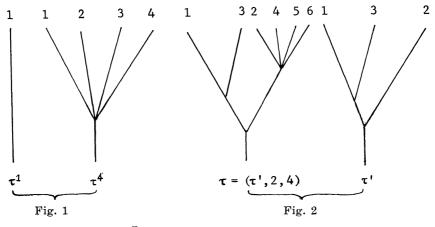
(Comm. by Kunihiko KODAIRA, M. J. A., Sept. 12, 1969)

This is a continuation of the previous paper [3], and treats a generalization of Wild's sum for $\{H_p^t\}$ and the propagation of chaos for the nonlinear equation (1.1). All the notations are preserved; §§1, 2 and numbered formulas which are quoted here are in [3].

3. A generalization of Wild's sum. The expression (2.1) defining the linear semigroup $\{H_p^i\}$ associated with the equation (1.1) leads naturally to a generalization of Wild's sum [1] as will be explained here. Denote by τ^k , $k \ge 1$, the tree with only one branching point which is k-fold, and give a number j $(1 \le j \le k)$ to each extreme point (or top) of the tree τ^k as in Fig. 1. We define the set T_n , $n \ge 1$, of trees with n extreme points and also the numbering to extreme points of each tree in T_n , inductively as follows.

i) $T_1 = \{\tau^1\}, T_2 = \{\tau^2\}.$

ii) $\tau \in T_n$, $n \ge 2$, is either a) $\tau = \tau^n$ or b) $\tau = (\tau', i, j)$ with $\tau' \in T_{n-j+1}$, $1 \le i \le n-j+1$, $2 \le j \le n$, where (τ', i, j) denotes the tree which is obtained by connecting τ^j at the *i*-th top of τ' . In particular, $(\tau^1, 1, n)$ is τ^n itself. In the case $\tau = (\tau', i, j)$, those extreme points of τ which are also extreme points of τ^j have the numbers $i, n-j+2, n-j+3, \cdots, n$, while other extreme points of τ have the same numbers as τ' (see Fig. 2).



Next, we set $T = \bigcup_{n=1}^{\infty} T_n$, $N(\tau) = n$ for $\tau \in T_n$, and $T'_1 = T$,