132. On Infinitesimal Affine Automorphisms of Siegel Domains

By Masaru Takeuchi
Osaka University
(Comm. by Kunihiko Kodaira, m. J. A., Sept. 12, 1969)

A non-empty open cone V in a finite dimensional vector space X over \boldsymbol{R} is called a convex cone, if it is convex and contains no straight lines. For example, the cone $\mathscr{P}(m, \boldsymbol{R})(\mathscr{P}(m, \boldsymbol{C}))$ of all positive-definite real symmetric (complex hermitian) matrices of degree m is a convex cone. For a convex cone V in X, an R-bilinear $\operatorname{map} F$ on a finite dimensional vector space Y over C into the complexification X^{c} of X is called a V-hermitian function if it is C-linear with respect to the first variable and $F(u, v)=\overline{F(v, u)}$, where $z \mapsto \bar{z}$ is the conjugation of X^{c} with respect to the real form X, and if it is V-positive-definite in the sense that $F(u, u) \in \bar{V}$ (the closure of V in $X)$ and $F(u, u)=0$ implies $u=0$ for $u \in Y$. For a V-hermitian function F, the domain $D(V, F)$ $=\left\{(z, u) \in X^{c} \times Y ; \mathcal{I}_{m} z-F(u, u) \in V\right\}$ of $X^{c} \times Y$ is called a Siegel domain associated to V and F. A Siegel domain $D(V, F)$ in $X^{c} \times Y$ is called irreducible if Y is not the direct sum of two non-trivial subspaces which are mutually orthogonal with respect to F. For Siegel domains $D(V, F) \subset X^{c} \times Y$ and $D\left(V^{\prime}, F^{\prime}\right) \subset X^{\prime} c \times Y^{\prime}$, an affine isomorphism φ of $X^{c} \times Y$ onto $X^{\prime} c \times Y^{\prime}$ is called an affine isomorphism of $D(V, F)$ onto $D\left(V^{\prime}, F^{\prime}\right)$ if $\varphi(D(V, F))=D\left(V^{\prime}, F^{\prime}\right)$. An affine isomorphism of a Siegel domain $D(V, F)$ onto itself is called an affine automorphism of $D(V, F)$. If the group of affine automorphisms of a Siegel domain is transitive on it the domain is said to be homogeneous.

In this note we shall state a theorem which reduces the classification of homogeneous Siegel domains with respect to affine isomorphism to the one of certain distributive algebras over \boldsymbol{R} and we shall describe the structure of the Lie algebra of the group of affine automorphisms of a homogeneous Siegel domain in terms of the above algebra.

A finite dimensional distributive algebra \mathfrak{c} over \boldsymbol{R} is called a matrix algebra with involution* of rank $m+1$ if : 1) it is bigraded: $\mathfrak{C}=\sum_{1 \leq i, k \leq m+1} \mathfrak{C}_{i k}$, 2) $\mathfrak{C}_{i k} \mathfrak{C}_{k l} \subset \mathfrak{C}_{i l}, \mathfrak{C}_{i k} \mathfrak{C}_{p q}=\{0\}$ if $k \neq p$, 3) $a \mapsto a^{*}$ is an involutive anti-automorphism of the algebra \mathfrak{C}, $\mathfrak{c}_{i k}^{*}=\mathfrak{C}_{k i}$, 4) if we put $n_{i k}=\operatorname{dim} \mathfrak{๒}_{i k}$, we have $n_{i i} \neq 0$ for $1 \leq i \leq m+1$. Henceforce, $a_{i k}, b_{i k}, \ldots$ will always denote arbitrary elements of the subspace $\mathfrak{C}_{i k}$. A matrix

