129. On the Category of $L^{1}(G) \cap L^{p}(G)$ in $A^{q}(G)^{*}$

By Hang-Chin LAI

Mathematical Institute Tohoku University, Sendai and Institute of Mathematics National Tsing Hua University, Taiwan, China

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1969)

1. Introduction and the main results.

Let G and \hat{G} be two locally compact abelian groups in Pontrjagin duality. The integration with respect to a suitably normalized Haar measure on G is indicated by the expressions such as

(1)
$$\int_{G} f(x) \, dx$$

Let $C_c(G)$ denote the space of all continuous complex-valued functions on G each of which vanishes outside of some compact set, and $C_o(G)$ the set of continuous functions each of which vanishes at infinity. We shall denote $A^p(G)$ $(1 \le p < \infty)$ the space of functions f in $L^1(G)$ whose Fourier transforms \hat{f} belong to $L^p(\hat{G})$ $(p \ge 1)$ and with the norm defined by

(2) $\|f\|_{p} = \|f\|_{1} + \|\hat{f}\|_{p}$ where $\|f\|_{1} = \int_{G} |f(x)| dx$ and $\|\hat{f}\|_{p} = \left(\int_{\hat{G}} |\hat{f}(\hat{x})|^{p} d\hat{x}\right)^{1/p}$, $d\hat{x}$ denotes the integration with respect to Haar measure on \hat{G} . Clearly, $A^{p}(G)$ is a dense ideal in $L^{1}(G)$ and is a Banach algebra under convolution with the norm $\|\cdot\|^{p}$ (see Larsen, Liu and Wang [6]).

We denote T_1 and T_2 the Fourier transforms on $L^1(G)$ and $L^2(G)$ respectively. That is

(3)
$$T_1 f(\hat{x}) = \int_G (-x, \hat{x}) f(x) \, dx$$

and

$$\begin{array}{c} (4) \\ \|T_1 f\|_{\infty} \leq \|f\|_1 \\ \|T_2 f\|_2 = \|f\|_2. \end{array}$$

If $f \in C_c(G)$, the Fourier transform T is defined by the usual expression

(5)
$$Tf(\hat{x}) = \int_{G} (-x, \, \hat{x}) f(x) \, dx,$$

and $T_1f = T_2f = Tf$ for every $f \in C_c(G)$. Throughout this present note, we suppose essentially that 1 and <math>1/p + 1/q = 1. A. Weil [9; pp. 116-117] has shown, by using the convexity theorem of M. Riesz

^{*)} This research was supported by the Mathematics Research Center, National Science Council, Taiwan, Republic of China.