127. Surjectivity of Linear Mappings and Relations

By Shouro KASAHARA Kobe University

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1969)

In [3], Pták has proved the following theorem, in which (1) is called the closed relation theorem and (2) the open mapping theorem.

Theorem A. Let E be a Banach space, F a normed linear space, R a closed linear subspace of $E \times F$, T a continuous linear mapping of E into F, and let $0 < \alpha < \beta$. Let U and V be the unit balls of E and F respectively.

(1) If the set $RU + \alpha V$ contains a translate of βV , then RE = Fand $(\beta - \alpha)V \subset RU$.

(2) If the set $T(U) + \alpha V$ contains a translate of βV , then T(E) = Fand $(\beta - \alpha)V \subset T(U)$, so that T is open.

A theorem which is similar to the assertion (2) is obtained by McCord [2]:

Theorem B. Suppose T is a continuous linear mapping of a Banach space E into a normed linear space F, for which there are positive real numbers α and β , $\beta < 1$, such that the following holds. For each y in F of norm 1, there exists an x in E of norm $\leq \alpha$ such that $||y-Tx|| \leq \beta$. Then for each y in F, there exists an x in E such that y=Tx and $||x|| < \alpha(1-\beta)^{-1}||y||$.

Theorem A has been generalized by Baker [1]. In this paper we shall state other generalizations of Theorem A and a generalization of Theorem B.

Throughout this paper, vector spaces are over the real or the complex numbers. Let E and F be two vector spaces, A a subset of E, and R be a subset of $E \times F$. By R(A) we denote the set of all $y \in F$ such that $(x, y) \in R$ for some $x \in A$; the set $R(\{x\})$, where $x \in E$, will be denoted by R(x). S(A) denotes the union of all λA with λ in the closed unit interval [0, 1], and A is said to be *star-shaped* if S(A)=A.

The essential part of our results is included in the following

Lemma. Let E and F be two topological vector spaces, and R be a closed vector subspace of $E \times F$. Let B_0 be a sequentially complete bounded star-shaped convex subset of E such that $R(B_0) \neq \emptyset$, and let B be a bounded subset of F. Then $B \subset R(B_0) + \alpha B$ implies $(1-\alpha)B$ $\subset R(B_0)$ for every $\alpha \in [0, 1] = [0, 1] \setminus \{1\}$.

Proof. It suffices to consider the case where $\alpha \neq 0$. Let y be an arbitrary element of B. Since $B \subset R(B_0) + \alpha B$, there are points $x_1 \in B_0$