# 127. Surjectivity of Linear Mappings and Relations 

By Shouro Kasahara

Kobe Uuiversity
(Comm. by Kinjirô Kunugi, m. J. A., Sept. 12, 1969)

In [3], Pták has proved the following theorem, in which (1) is called the closed relation theorem and (2) the open mapping theorem.

Theorem A. Let E be a Banach space, F a normed linear space, $R$ a closed linear subspace of $E \times F, T$ a continuous linear mapping of $E$ into $F$, and let $0<\alpha<\beta$. Let $U$ and $V$ be the unit balls of $E$ and $F$ respectively.
(1) If the set $R U+\alpha V$ contains a translate of $\beta V$, then $R E=F$ and $(\beta-\alpha) V \subset R U$.
(2) If the set $T(U)+\alpha V$ contains a translate of $\beta V$, then $T(E)=F$ and $(\beta-\alpha) V \subset T(U)$, so that $T$ is open.

A theorem which is similar to the assertion (2) is obtained by McCord [2]:

Theorem B. Suppose $T$ is a continuous linear mapping of a Banach space $E$ into a normed linear space $F$, for which there are positive real numbers $\alpha$ and $\beta, \beta<1$, such that the following holds. For each $y$ in $F$ of norm 1, there exists an $x$ in $E$ of norm $\leq \alpha$ such that $\|y-T x\| \leq \beta$. Then for each $y$ in $F$, there exists an $x$ in $E$ such that $y=T x$ and $\|x\|<\alpha(1-\beta)^{-1}\|y\|$.

Theorem A has been generalized by Baker [1]. In this paper we shall state other generalizations of Theorem A and a generalization of Theorem B.

Throughout this paper, vector spaces are over the real or the complex numbers. Let $E$ and $F$ be two vector spaces, $A$ a subset of $E$, and $R$ be a subset of $E \times F$. By $R(A)$ we denote the set of all $y \in F$ such that $(x, y) \in R$ for some $x \in A$; the set $R(\{x\})$, where $x \in E$, will be denoted by $R(x)$. $S(A)$ denotes the union of all $\lambda A$ with $\lambda$ in the closed unit interval [ 0,1 ], and $A$ is said to be star-shaped if $S(A)=A$.

The essential part of our results is included in the following
Lemma. Let $E$ and $F$ be two topological vector spaces, and $R$ be a closed vector subspace of $E \times F$. Let $B_{0}$ be a sequentially complete bounded star-shaped convex subset of $E$ such that $R\left(B_{0}\right) \neq \varnothing$, and let $B$ be a bounded subset of $F$. Then $B \subset R\left(B_{0}\right)+\alpha B$ implies $(1-\alpha) B$ $\subset R\left(B_{0}\right)$ for every $\alpha \in[0,1)=[0,1] \backslash\{1\}$.

Proof. It suffices to consider the case where $\alpha \neq 0$. Let $y$ be an arbitrary element of $B$. Since $B \subset R\left(B_{0}\right)+\alpha B$, there are points $x_{1} \in B_{0}$

