160. On the Dimension of the Product of a Countably Paracompact Normal Space with the Unit Interval

By Tatsuo Goto
(Comm. by Kinjirô Kunugi, m. J. A., Oct. 13, 1969)

1. Introduction. In 1953, K. Morita [3] proved that $\operatorname{dim}(X \times I)$ $=\operatorname{dim} X+1$ holds if X is a paracompact Hausdorff space, where I denotes the closed unit interval $[0,1]$ and dim means the covering dimension. He also conjectured that the above equality would be valid if X is countably paracompact normal. In this note we shall answer this problem in the affirmative.

Let us denote by $D(X ; G)$ the cohomological dimension of a space X with respect to an abelian group G, that is, $D(X ; G)$ is the largest integer n such that $H^{n}(X, A ; G) \neq 0$ for some closed set A of X, where H^{*} denotes the Čech cohomology based on all locally finite open coverings. We shall prove

Theorem 1. Let X be a countably paracompact normal space with a finite covering dimension and G a countable abelian group. Then $D(X \times I ; G)=D(X ; G)+1$.

As is proved by Y. Kodama [2], the above relation holds for any abelian group G if X is a paracompact Hausdorff space. If we take $G=$ the group of integers Z in Theorem 1 , we have $\operatorname{dim}(X \times I)$ $=\operatorname{dim} X+1$, since $D(X ; Z)=\operatorname{dim} X$ for each normal space X with a finite covering dimension.
2. Lemmas. The following lemmas are proved in [1].

Lemma 1. Let X be a countably paracompact normal space and Y a compact metric space. Then the Künneth formula $H^{n}(X \times Y ; G)$ $\cong \sum_{p+q=n} H^{p}\left(X ; H^{q}(Y ; G)\right)$ holds for each countable abelian group G.

Lemma 2. Let X, Y be countably paracompact normal spaces and let A, B be closed sets in X, Y respectively. If $f:(X, A) \rightarrow(Y, B)$ is a map such that
(1) $f \mid X-A: X-A \rightarrow Y-B$ is a onto homeomorphism;
(2) if F is a closed set in X and $F \subset X-A$, then $f(F)$ is closed in Y. Then $f^{*}: H^{*}(Y, B ; G) \rightarrow H^{*}(X, A ; G)$ is a onto isomorphism for each abelian group G.

Let X be a normal space and A a closed set in X. By [2, Lemma $3]$ for each countable locally finite open covering \mathfrak{H} of A, there exists a countable locally finite open covering \mathfrak{B} of X such that $\mathfrak{B} \mid A$ is a refinement of \mathfrak{H}. Therefore if we denote by $H_{c}^{*}(X, A ; G)$ the Cech

