158. On the Bi-ideals in Semigroups

By Sándor Lajos
K. Marx University of Economics, Budapest, Hungary

(Comm. by Kinjirô Kunugi, M. J. A., Oct. 13, 1969)

Let S be a semigroup, and A be a non-empty subset of S. We shall say that A is a bi-ideal or (1, 1)-ideal of S if the following conditions hold :
(i) A is a subsemigroup of S.
(ii) $A S A \subseteq A$.

The notion of bi-ideal was introduced by R. A. Good and D. R. Hughes [2]. It is also a special case of the (m, n)-ideal introduced by the author [4].

In this short note we give a summary of some results concerning the bi-ideals of semigroups, and we announce some new results. For the terminology not defined here we refer to the books by A. H. Clifford and G. B. Preston [1]. Proofs of the results will not be given.

Theorem 1. Let S be an arbitrary semigroup. Then any left (right, two-sided, and quasi-) ideal of S is a bi-ideal of S.

Theorem 2. Suppose that A_{1}, \cdots, A_{n} are bi-ideals of a semigroup S. Then the intersection $B=\bigcap_{i=1}^{n} A_{i}$ either is empty or it is a bi-ideal of S.

We say that a bi-ideal A of a semigroup S is a proper bi-ideal of S_{\star} if A is a proper subset of S, that is, the set $S-A$ is not empty. It is easy to see that a group has not proper bi-ideals, and what is more this property characterizes the class of groups among semigroups.

Theorem 3. A semigroup S is a group if and only if it has not proper bi-ideals.

By a bi-ideal of a semigroup S generated by a non-empty subset A of S we mean the smallest bi-ideal of S containing A. Let us denote this bi-ideal by $(A)_{(1,1)}$. If the set A consists of a single element then the bi-ideal of S generated by A is said to be a principal bi-ideal of S. It is easy to show that the following assertion is true.

Theorem 4. Let a be an arbitrary element, and A be a non-empty subset of S. Then $(A)_{(1,1)}=A \cup A^{2} \cup A S A$ and $(a)_{(1,1)}=a \cup a^{2} \cup a S a$.

An important property of the bi-ideals is formulated in the following theorem. This was proved by the author (see [6], first part).

Theorem 5. Let A be a bi-ideal and B be a non-empty subset of $S . \quad$ Then the products $A B$ and $B A$ are bi-ideals of S.

