153. On Mixed Problems for First Order Hyperbolic Systems with Constant Coefficients

By Takashi Sadamatsu
(Comm. by Kinjirô Kunugi, m. J. A., Oct. 13, 1969)

1. Introduction. Mixed problems for linear hyperbolic equations with constant coefficients in a quarter space has been treated by S. Agmon [1], R. Hersh [2] and L. Sarason [6].

In this note, we consider the mixed problem for first order hyperbolic systems with the principal part

$$
\left\{\begin{array}{l}
L[u] \equiv \frac{\partial}{\partial t} u+A \frac{\partial}{\partial x} u+\sum_{j=1}^{n} B_{j} \frac{\partial}{\partial y_{j}} u=f(t ; x, y) \tag{1.1}\\
u(0 ; x, y)=0 \\
P u(t ; 0, y)=0
\end{array}\right.
$$

in the quarter space $\left\{(t ; x, y) ; t>0, x>0, y \in R^{n}\right\}$, where u is a N vector, $A, B_{j}(j=1,2, \cdots, n) N \times N$-constant matrices and $P m \times N$ constant matrix of rank m. A is supposed to be non-singular.

Our argument is based on Wiener-Hopf's method. After Laplace transformation in t and Fourier transformation in y, the problem (1.1) is translated into the following equation

$$
\left\{\begin{array}{l}
\left(A \frac{d}{d x}+\tau I+i \sum_{j=1}^{n} \eta_{j} B_{j}\right) \hat{u}(\tau ; x, \eta)=\hat{f}(\tau ; x, \eta) \tag{1.2}\\
P \hat{u}(\tau ; 0, \eta)=0
\end{array}\right.
$$

where $\hat{u}(\tau ; x, \eta)$ denotes the Fourier-Laplace image of $u(t ; x, y)$. Using a compensating function $\hat{g}(\tau ; x, \eta)$ which shall be constructed later and setting $u=v+w$, we decompose the problem (1.2) to two problems

$$
\begin{equation*}
\left(A \frac{d}{d x}+\tau I+i \sum_{j=1}^{n} \eta_{j} B_{j}\right) \hat{v}(\tau ; x, \eta)=\hat{f}(\tau ; x, \eta)+\hat{g}(\tau ; x, \eta) \tag{1.3}
\end{equation*}
$$

in $x \in R^{1}$ and

$$
\left\{\begin{array}{l}
\left(\frac{d}{d x}+M(\tau, \eta)\right) \hat{w}(\tau ; x, \eta)=0 \tag{1.4}\\
P \hat{w}(\tau ; 0, \eta)=-P \hat{v}(\tau ; 0, \eta)
\end{array}\right.
$$

where $M(\tau, \eta)=A^{-1}\left(\tau I+i \sum_{j=1}^{n} \eta_{j} B_{j}\right)$. Thus we are to treat the problems (1.3) and (1.4).
2. Assumptions and result. Condition I. The operator L is hyperbolic in the following sense : 1) the matrix $\xi A+\eta B(\eta B$ stands for $\left.\sum_{j=1}^{n} \eta_{j} B_{j}\right)$ has only real eigenvalues for any real $\left.(\xi, \eta), 2\right)$ the matrix

