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1o Introduction. In our previous paper [4], we showed that,
using the vector cross product induced by Cayley numbers, any
5-dimensional orientable submanifold M of R admits an almost con-
tact structure.

In this paper, denoting this almost contact structure by (,
we shall study the torsion of . First, we shall prove that if M is
totally geodesic then the torsion of vanishes identically (Theorem 1).
Secondly, we consider the converse problem. Unfortunately, this is
not true in general. But we shall prove that if M is totally umbilical,
then the vanishing of the torsion of implies that M is totally geodesic

(Theorem 2).
2. Basic informations.
(a) Almost contact manifolds.
Let M be a (2n + 1)-dimensional C manifold with an almost con-

tact structure (, , r]). Then we have, by definition,
(I) (#)-- I,
( 2 ) 0()-- O,
( 3 ) 02- --I+ r](.),
where I is the identity transformation field.

By above relations, it can be easily shown that the rank o 0 is 2n.
We denote the associated Riemannian metric of (0, , ]) by

Then it satisfies
(a) -<, .>,
( 5 ) <OX, OY}--(X, Y}--7(X)ri(Y), for any vector fields X, Y on M.

The tensor N(X, Y) defined by
( 6 ) N(X, Y) [X, Y] + O[OX, Y] + O[X, 0Y] [OX, 0Y]

--{X. ri(Y)-- Y. ri(X)}$
is called the torsion of and M is called normal if N vanishes identi-
cally.

(b) The vector cross product on R7.
The vector cross product on R is a linear map P" V(R)X V(R9

-V(R) (writing here P(, )-(R)) satisfing the ollowing condi-
tions"
( 7 ) X(R)Y- Y(R)X,
( 8 ) <X(R) Y, Z>-(X, Y(R)Z},


