150. 5-dimensional Orientable Submanifolds of R⁷. II

By Minoru KOBAYASHI

Department of Mathematics, Josai University, Saitama

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 13, 1969)

1. Introduction. In our previous paper [4], we showed that, using the vector cross product induced by Cayley numbers, any 5-dimensional orientable submanifold M of R^{7} admits an almost contact structure.

In this paper, denoting this almost contact structure by (\emptyset, ξ, η) , we shall study the torsion of \emptyset . First, we shall prove that if M is totally geodesic then the torsion of \emptyset vanishes identically (Theorem 1). Secondly, we consider the converse problem. Unfortunately, this is not true in general. But we shall prove that if M is totally umbilical, then the vanishing of the torsion of \emptyset implies that M is totally geodesic (Theorem 2).

2. Basic informations.

(a) Almost contact manifolds.

Let *M* be a (2n+1)-dimensional C^{∞} manifold with an almost contact structure (\emptyset, ξ, η) . Then we have, by definition,

(1) $\eta(\xi) = 1,$

where I is the identity transformation field.

By above relations, it can be easily shown that the rank of \emptyset is 2n.

We denote the associated Riemannian metric of (\emptyset, ξ, η) by \langle , \rangle . Then it satisfies

(4)

 $\eta{=}{\langle{arsigma},{\,\cdot\,
angle},}$

(5) $\langle \emptyset X, \emptyset Y \rangle = \langle X, Y \rangle - \eta(X)\eta(Y)$, for any vector fields X, Y on M. The tensor N(X, Y) defined by

(6)
$$N(X, Y) = [X, Y] + \emptyset[\emptyset X, Y] + \emptyset[X, \emptyset Y] - [\emptyset X, \emptyset Y] - \{X \cdot \eta(Y) - Y \cdot \eta(X)\}\xi$$

is called the *torsion* of \emptyset and M is called *normal* if N vanishes identically.

(b) The vector cross product on \mathbb{R}^{7} .

The vector cross product on R^{τ} is a linear map $P: V(R^{\tau}) \times V(R^{\tau}) \rightarrow V(R_{\tau})$ (writing here $P(\vec{X}, \vec{Y}) = \vec{X} \otimes \vec{Y}$) satisfing the following conditions:

- (7) $\bar{X}\otimes\bar{Y}=-\bar{Y}\otimes\bar{X},$
- (8) $\langle \vec{X} \otimes \vec{Y}, \vec{Z} \rangle = \langle \vec{X}, \vec{Y} \otimes \vec{Z} \rangle,$