150. 5-dimensional Orientable Submanifolds of R^{7}. II

By Minoru Kobayashi
Department of Mathematics, Josai University, Saitama

(Comm. by Kinjirô Kunugi, M. J. A., Oct. 13, 1969)

1. Introduction. In our previous paper [4], we showed that, using the vector cross product induced by Cayley numbers, any 5-dimensional orientable submanifold M of R^{7} admits an almost contact structure.

In this paper, denoting this almost contact structure by (\varnothing, ξ, η), we shall study the torsion of \varnothing. First, we shall prove that if M is totally geodesic then the torsion of \varnothing vanishes identically (Theorem 1). Secondly, we consider the converse problem. Unfortunately, this is not true in general. But we shall prove that if M is totally umbilical, then the vanishing of the torsion of \varnothing implies that M is totally geodesic (Theorem 2).

2. Basic informations.

(a) Almost contact manifolds.

Let M be a $(2 n+1)$-dimensional C^{∞} manifold with an almost contact structure (\varnothing, ξ, η). Then we have, by definition,

$$
\begin{equation*}
\emptyset(\xi)=0, \quad \eta \circ \emptyset=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\emptyset^{2}=-I+\eta(\cdot) \xi \tag{2}
\end{equation*}
$$

where I is the identity transformation field.
By above relations, it can be easily shown that the rank of \emptyset is $2 n$.
We denote the associated Riemannian metric of (\varnothing, ξ, η) by \langle,$\rangle .$ Then it satisfies

$$
\begin{equation*}
\eta=\langle\xi, \cdot\rangle, \tag{4}
\end{equation*}
$$

(5) $\langle\emptyset X, \emptyset Y\rangle=\langle X, Y\rangle-\eta(X) \eta(Y)$, for any vector fields X, Y on M.

The tensor $N(X, Y)$ defined by

$$
\begin{equation*}
N(X, Y)=[X, Y]+\emptyset[\varnothing X, Y]+\varnothing[X, \varnothing Y]-[\varnothing X, \varnothing Y] \tag{6}
\end{equation*}
$$

$$
-\{X \cdot \eta(Y)-Y \cdot \eta(X)\} \xi
$$

is called the torsion of \emptyset and M is called normal if N vanishes identically.
(b) The vector cross product on R^{7}.

The vector cross product on R^{7} is a linear map $P: V\left(R^{7}\right) \times V\left(R^{7}\right)$ $\rightarrow V\left(R_{7}\right)$ (writing here $\left.P(\bar{X}, \bar{Y})=\bar{X} \otimes \bar{Y}\right)$ satisfing the following conditions:

$$
\begin{equation*}
\bar{X} \otimes \bar{Y}=-\bar{Y} \otimes \bar{X}, \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\langle\bar{X} \otimes \bar{Y}, \bar{Z}\rangle=\langle\bar{X}, \bar{Y} \otimes \bar{Z}\rangle, \tag{8}
\end{equation*}
$$

