146. Free and Semi-free Differentiable Actions on Homotopy Spheres

By Katsuo KAWAKUBO*' Osaka University

(Comm. by Kenjiro SHODA, M. J. A., Oct. 13, 1969)

1. Introduction. The theorem of Browder-Novikov enables us to construct free differentiable actions of S^1 and S^3 on homotopy spheres (see Hsiang [8]). As is shown in § 2 of this paper, every free differentiable action is obtained in such a way. Hence if we know *J*-groups of complex projective spaces CP^n and quaternionic projective spaces QP^n , we can classify free differentiable actions of S^1 and S^3 on homotopy spheres. In [12], Prof. S. Sasao has determined *J*-groups of spaces which are like projective planes. Consequently we can determine the homotopy 11-spheres admitting free differentiable S^3 actions. Let Σ_M^{11} be the generator of Θ_{11} due to Milnor. Then we shall have

Theorem 1. Every homotopy sphere Σ which is diffeomorphic to $32k \Sigma_{\mathcal{M}}^{11}$ for some $k \equiv 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 10, \pm 11, \pm 12, \pm 14, \pm 15 \pmod{31}$ admits infinitely many topologically distinct S³-actions and the remains of homotopy 11-spheres do not admit any free differentiable S³-actions.

Let Θ_n be the group of homotopy *n*-spheres and $\Theta_n(\partial \pi)$ be the subgroup consisting of those homotopy spheres which bound parallelizable manifolds. Let $\beta: \Theta_n \to \Theta_n(\partial \pi)$ be the splitting due to Brumfiel [5] and let Σ_M^{15} be the generator of $\Theta_{15}(\partial \pi)$ due to Milnor. Then we shall have

Theorem 2. There exist at least 35 homotopy 15-spheres $\{\Sigma_k\}$ all of which admit infinitely many topologically distinct S³-actions such that $\beta(\Sigma_k)=2^{\circ}\cdot k\Sigma_M^{15}$ where $k\equiv 0, \pm 6, \pm 8, \pm 13, \pm 14, \pm 15, \pm 17, \pm 23,$ $\pm 26, \pm 34, \pm 35, \pm 45, \pm 48, \pm 50, \pm 51, \pm 53, \pm 55, \pm 57 \pmod{127}$.

On the other hand we shall have

Theorem 3. A homotopy 15-sphere Σ admits no free differentiable S^3 -actions if $k \not\equiv 4 \pmod{4}$ where k is an integer defined by $\beta(\Sigma) = k \Sigma_{M}^{15}$.

As for free S^1 -actions on homotopy 15-spheres, we shall have

Theorem 4. There exist at least 70 homotopy 15-spheres $\{\Sigma_i^{15}\}$ all of which admit infinitely many topologically distinct S¹-actions.

An action (M^m, φ, G) is called semi-free if it is free off of the fixed

^{*)} The author is partially supported by the Yukawa Foundation.