189. A Note on a Paper of Farkas

By Ryutaro Horiuchi
Kyoto Industry University
(Comm. by Kinjirô Kunugi, m. J. A., Dec. 12, 1969)

H. E. Rauch [1] and H. M. Farkas [2] discussed analytic submanifolds of Teichmüller space, and in relation to these studies Farkas [3] pointed out the following theorem:

Let S be a compact Riemann surface of genus $g \geqq 4$. Let q be a Weierstrass point on S whose Weierstrass sequence begins with 3. Then 4 is a gap at q.

In this paper we shall prove the following more general theorem.
Theorem. Let S be a compact Riemann surface of genus $g>r(r-1) / 2$, where $r(1<r<g)$ is an integer. Let q be a Weierstrass point on S whose Weierstrass sequence begins with r. Then $r+1$ is a gap at q.

First we recall some definitions and results from the theory of compact Riemann surfaces.

There are exactly g orders $n_{i}, 0<n_{1}<n_{2}<\cdots<n_{g}<2 g$, that can be specified at each point p on S such that no meromorphic function exists having as its only singularity a pole of order n_{i} at p. The sequence ($n_{1}, n_{2}, \cdots, n_{g}$) is called then a gap sequence at p. Given a point p on S, its gap sequence is $(1,2, \cdots, q)$ in general; however, there do exist points on S whose gap sequences omit some of these numbers. These points are called Weierstrass points. In other words, the gap sequence for a Weierstrass point omits an integer n, $2 \leqq n \leqq g$. The complement of the gap sequence in the sequence of integers $(1,2, \cdots, 2 g)$ is called the Weierstrass sequence.

Lemma. If there is a Weierstrass point on S whose Weierstrass sequence contains $r, r+1, \cdots, r+m$, then

$$
(t+1)[(r-1)-t m / 2] \geqq g
$$

where t is the smallest integer which satisfies $t \geqq(r-1) / m$.
Proof. The integers $r, r+1, \cdots, r+m$ form the module whose elements are not gaps. Hence the gaps must be contained in the set of remaining natural numbers, which are $1,2, \cdots, r-1 ; r+m+1$, $r+m+2, \cdots, 2 r-1 ; \cdots ; \cdots t r-1$; where t is the smallest integer which satisfies $t \geqq(r-1) / m$. While as is well known, the number of gaps is exactly g, so we have

$$
(r-1)+(r-m-1)+\cdots+(r-t m-1) \geqq g
$$

that is,

