183. Elliptic Modular Surfaces. II

By Tetsuji Shioda
Department of Mathematics, University of Tokyo

(Comm. by Kunihiko Kodaira, m. J. a., Dec. 12, 1969)

In the first part [6], we have introduced a special class of elliptic surfaces called elliptic modular surfaces. In this part II, we shall indicate the proof of the theorem announced in [6] (Theorems 3.1 and 5.4). A reformulation and a few remarks will be given in Section 6.

The author wishes to thank Professor Shimura who kindly gave him various remarks.

Notation. We use the same notations as in [6]. In particular, Γ always denotes a torsion-free subgroup of finite index of $S L(2, Z)$ (except in Remark 6.6).
3. The group of sections. In this section we shall prove

Theorem 3.1. An elliptic modular surface has only a finite number of sections over the base curve.

We denote by μ the index of the subgroup $\Gamma\left\{ \pm 1_{2}\right\}$ in $S L(2, Z)$, and by t_{1} (or t_{2}) the number of cusps of the first (or second) kind; put $t=t_{1}+t_{2}$. Then the genus g of the curve $\Delta=\Delta_{\Gamma}$ is given by the formula: $2 g-2+t=\mu / 6$. The index μ is clearly equal to the order of the meromorphic function J on Δ, the functional invariant of the elliptic modular surface B_{r}. Hence, from Theorem 12.2 of [1], we can compute the arithmetic and geometric genus of B_{Γ}.

Lemma 3.2. $p_{a}=\mu / 12+t_{2} / 2-1$,

$$
p_{g}=2 g-2+t-t_{1} / 2 .
$$

Comparing Lemma 3.2 with Theorem 1.2 and Corollary 1.4, we get
Lemma 3.3. $r=0$ and $r^{\prime}=2 p_{g}$.
Thus the group $H^{0}\left(\Delta, \Omega\left(B_{0}^{*}\right)\right)$ is of rank 0 , i.e., finite. By considering the exact sequence ([1], Section 11)
$(* * *) \quad 0 \rightarrow \Omega\left(B_{0}^{*}\right) \rightarrow \Omega\left(B^{\sharp}\right) \rightarrow Q \rightarrow 0$,
where the quotient Q is a sheaf of finite groups with the support on the finite set $\Delta-\Delta^{\prime}$, we conclude that the group $H^{0}\left(\Delta, \Omega\left(B^{*}\right)\right)$ is also finite, which completes the proof of Theorem 3.1.

Example 3.4. For the elliptic modular surface $B(N)$ for level $N(N \geq 3)$ (cf. Example 2.1-where we used the above Lemma 3.3), we can show that the group of sections of $B(N)$ is isomorphic to the finite group $(\boldsymbol{Z} / N \boldsymbol{Z})^{2}$. Moreover any two distinct sections do not meet each other. When $N=3, B(3)$ is a rational surface and the 9 sections are mutually disjoint exceptional curves of the first kind (cf. [6a]. p. 464).

