183. Elliptic Modular Surfaces. II

By Tetsuji Shioda

Department of Mathematics, University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., Dec. 12, 1969)

In the first part [6], we have introduced a special class of elliptic surfaces called elliptic modular surfaces. In this part II, we shall indicate the proof of the theorem announced in [6] (Theorems 3.1 and 5.4). A reformulation and a few remarks will be given in Section 6.

The author wishes to thank Professor Shimura who kindly gave him various remarks.

Notation. We use the same notations as in [6]. In particular, Γ always denotes a torsion-free subgroup of finite index of $SL(2, \mathbb{Z})$ (except in Remark 6.6).

3. The group of sections. In this section we shall prove

Theorem 3.1. An elliptic modular surface has only a finite number of sections over the base curve.

We denote by μ the index of the subgroup $\Gamma\{\pm 1_2\}$ in $SL(2, \mathbb{Z})$, and by t_1 (or t_2) the number of cusps of the first (or second) kind; put $t=t_1+t_2$. Then the genus g of the curve $\Delta=\Delta_{\Gamma}$ is given by the formula: $2g-2+t=\mu/6$. The index μ is clearly equal to the order of the meromorphic function J on Δ , the functional invariant of the elliptic modular surface B_{Γ} . Hence, from Theorem 12.2 of [1], we can compute the arithmetic and geometric genus of B_{Γ} .

Lemma 3.2. $p_a = \mu/12 + t_2/2 - 1$,

 $p_g = 2g - 2 + t - t_1/2.$

Comparing Lemma 3.2 with Theorem 1.2 and Corollary 1.4, we get Lemma 3.3. r=0 and $r'=2p_g$.

Thus the group $H^{0}(\varDelta, \Omega(B_{0}^{\sharp}))$ is of rank 0, i.e., finite. By considering the exact sequence ([1], Section 11)

 $(***) \qquad \qquad 0 \to \Omega(B^{\sharp}_{0}) \to \Omega(B^{\sharp}) \to Q \to 0,$

where the quotient Q is a sheaf of finite groups with the support on the finite set $\Delta - \Delta'$, we conclude that the group $H^{0}(\Delta, \Omega(B^{\sharp}))$ is also finite, which completes the proof of Theorem 3.1.

Example 3.4. For the elliptic modular surface B(N) for level $N \ (N \ge 3)$ (cf. Example 2.1—where we used the above Lemma 3.3), we can show that the group of sections of B(N) is isomorphic to the finite group $(\mathbb{Z}/N\mathbb{Z})^2$. Moreover any two distinct sections do not meet each other. When N=3, B(3) is a rational surface and the 9 sections are mutually disjoint exceptional curves of the first kind (cf. [6a]. p. 464).