182. Finite Automorphism Groups of Restricted Formal Power Series Rings

By Akira Endô

Department of Mathematics, Shimane University

(Comm. by Kenjiro SHODA, M. J. A., Dec. 12, 1969)

1. A formal power series $f = \sum_{i=0}^{\infty} a_i X^i$ with coefficients in a linearly topological ring A is called a restricted formal power series if the

sequence of its coefficients $\{a_i\}$ converges to 0. All of such formal power series forms a subring of the formal power series ring A[[X]], which is called a restricted formal power series ring and denoted by $A\{X\}$.

In [5], Samuel has obtained the following result:

Let A be a Noetherian complete local integral domain, and G a finite group consisting of A-automorphisms of A[[X]]. Then there exists a formal power series f such that the G-invariant subring of A[[X]] is A[[f]].

This is a generalization of the result of Lubin [2] which dealt with the case where A is the ring of p-adic integers and G is given by using a formal group law.

The main purpose of this paper is to prove the following:

Theorem. Let A be a Noetherian complete integral domain with the maximal ideal m, and G a finite group consisting of A-automorphisms of $A{X}$. If the residue class field A/m is perfect, there exists a series $f \in A{X}$ such that the G-invariant subring $A{X}^{G}$ of $A{X}$ is $A{f}$.

2. At first, we shall show some results concerning $A\{X\}$.

Lemma 1. Let A be a linearly topological ring whose topology is complete and T_0 . Then, $A{X+a}=A{X}$ for any $a \in A$.

Proof. For any $f = \sum_{i=0}^{\infty} a_i (X+a)^i \in A\{X+a\}$, we have $f = \sum_{i=0}^{\infty} b_i X^i$ in A[[X]] where (b) converges to 0. Hence, $f \in A(X)$

in A[[X]], where $\{b_i\}$ converges to 0. Hence, $f \in A\{X\}$.

If a is an ideal of A, by $a\{X\}$ we denote the ideal of $A\{X\}$ consisting of all series $\sum_{i=0}^{\infty} a_i X^i$, $a_i \in a$.

Lemma 2. Let A be a linearly topological ring whose topology is complete and T_0 . Let m be a closed ideal of A such that every $m \in m$ is topologically nilpotent. If $f \in A\{X\}$ is a series such that $\overline{f} = f \mod m\{X\}$ is a unitary polynomial with the degree $s \ge 1$, then $A\{X\}$ is the